• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UVaDOCCommunitiesBy Issue DateAuthorsSubjectsTitles

    My Account

    Login

    Statistics

    View Usage Statistics

    Share

    View Item 
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • View Item
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • View Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/74130

    Título
    Deep learning for obstructive sleep apnea diagnosis based on single channel oximetry
    Autor
    Levy, Jeremy
    Álvarez González, DanielAutoridad UVA Orcid
    Campo Matias, Félix delAutoridad UVA Orcid
    Behar, Joachim A.
    Año del Documento
    2023
    Editorial
    SPRINGER NATURE
    Descripción
    Producción Científica
    Documento Fuente
    Nature Communications, 2023, vol. 14, p. 4881
    Abstract
    Obstructive sleep apnea (OSA) is a serious medical condition with a high prevalence, although diagnosis remains a challenge. Existing home sleep tests may provide acceptable diagnosis performance but have shown several limitations. In this retrospective study, we used 12,923 polysomnography recordings from six independent databases to develop and evaluate a deep learning model, calledOxiNet, for the estimation of the apnea-hypopnea index from the oximetry signal. We evaluated OxiNet performance across ethnicity, age, sex, and comorbidity. OxiNet missed 0.2% of all test set moderate-tosevere OSA patients against 21% for the best benchmark.
    ISSN
    2041-1723
    Revisión por pares
    SI
    DOI
    10.1038/s41467-023-40604-3
    Patrocinador
    J.A.B. and J.L. acknowledge the financial support of Israel PBC-VATAT and by the Technion Center for Machine Learning and Intelligent Systems (MLIS). D.Á. is supported by a “Ramón y Cajal” grant (RYC2019-028566-I) from the “Ministerio de Ciencia e Innovación - Agencia Estatal de Investigación” co-funded by the European Social Fund and in part by Sociedad Española de Neumología y Cirugía Torácica (SEPAR) under project 649/2018 and by Sociedad Española de Sueño (SES) under the project “Beca de Investigación SES 2019. In addition, D.Á. has been partially supported by “CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBERBBN)” through “Instituto de Salud Carlos III” co-funded with FEDER funds.
    Version del Editor
    https://www.nature.com/articles/s41467-023-40604-3
    Propietario de los Derechos
    Levy L et al.
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/74130
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Collections
    • DEP71 - Artículos de revista [358]
    Show full item record
    Files in this item
    Nombre:
    (5)Levy-etal_NatureCommunications-2023(OpenAccess).pdf
    Tamaño:
    3.336Mb
    Formato:
    Adobe PDF
    Descripción:
    Published version (Open Access)
    Thumbnail
    FilesOpen
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalExcept where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10