Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/74142
Título
On the existence of weak efficient solutions of nonconvex vector optimization problems
Año del Documento
2020
Editorial
Springer
Descripción
Producción Científica
Documento Fuente
Journal of Optimization Theory and Applications, 2020, vol. 185, n. 3 p. 880-902
Resumo
We study vector optimization problems with solid non-polyhedral convex ordering cones, without assuming any convexity or quasiconvexity assumption. We state a Weierstrass-type theorem and existence results for weak efficient solutions for coercive and noncoercive problems. Our approach is based on a new coercivity notion for vector valued functions, two realizations of the Gerstewitz scalarization function, asymptotic analysis and a regularization of the objective function. We define new boundedness and lower semicontinuity properties for vector-valued functions and study their properties. These new tools rely heavily on the solidness of the ordering cone through the notion of colevel and level sets. As a consequence of this approach, we improve various existence results from the literature, since weaker assumptions are required
Palabras Clave
Vector optimization
Weak efficient solution
Existence result
Coercive vector-valued function
Colevel set
Level set
Nonlinear scalarization
ISSN
0022-3239
Revisión por pares
SI
Patrocinador
This research was partially supported by Ministerio de Economía y Competitividad (Spain) under Project MTM2015-68103-P (MINECO/FEDER), by Ministerio de Ciencia, Innovación y Universidades (MCIU), Agencia Estatal de Investigación (AEI) (Spain) and Fondo Europeo de Desarrollo Regional (FEDER, UE) under Project PGC2018-096899-B-I00 and by ANID (Chile) under Project Fondecyt 1181368
Version del Editor
Propietario de los Derechos
Springer
Idioma
eng
Tipo de versión
info:eu-repo/semantics/acceptedVersion
Derechos
openAccess
Aparece en las colecciones
Arquivos deste item