• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Navegar

    Todo o repositórioComunidadesPor data do documentoAutoresAssuntosTítulos

    Minha conta

    Entrar

    Estatística

    Ver as estatísticas de uso

    Compartir

    Ver item 
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Departamentos
    • Dpto. Informática (Arquitectura y Tecnología de Computadores, Ciencias de la Computación e Inteligencia ...)
    • DEP41 - Artículos de revista
    • Ver item
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Departamentos
    • Dpto. Informática (Arquitectura y Tecnología de Computadores, Ciencias de la Computación e Inteligencia ...)
    • DEP41 - Artículos de revista
    • Ver item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/74391

    Título
    A comparison of machine learning algorithms on design smell detection using balanced and imbalanced dataset: A study of God class
    Autor
    Alkharabsheh, Khalid
    Alawadi, Sadi
    Kebande, Victor R.
    Crespo González Carvajal, YaniaAutoridad UVA Orcid
    Fernández Delgado, Manuel
    Taboada González, José A.
    Año del Documento
    2022
    Editorial
    Elsevier
    Descripción
    Producción Científica
    Documento Fuente
    Information and Software Technology, Volume 143, 2022, p. 106736,
    Resumo
    *Context:* Design smell detection has proven to be a significant activity that has an aim of not only enhancing the software quality but also increasing its life cycle. *Objective:* This work investigates whether machine learning approaches can effectively be leveraged for software design smell detection. Additionally, this paper provides a comparatively study, focused on using balanced datasets, where it checks if avoiding dataset balancing can be of any influence on the accuracy and behavior during design smell detection. *Method:* A set of experiments have been conducted-using 28 Machine Learning classifiers aimed at detecting God classes. This experiment was conducted using a dataset formed from 12,587 classes of 24 software systems, in which 1,958 classes were manually validated. *Results:* Ultimately, most classifiers obtained high performances,-with Cat Boost showing a higher perfor- mance. Also, it is evident from the experiments conducted that data balancing does not have any significant influence on the accuracy of detection. This reinforces the application of machine learning in real scenarios where the data is usually imbalanced by the inherent nature of design smells. *Conclusions:* Machine learning approaches can effectively be used as a leverage for God class detection. While in this paper we have employed SMOTE technique for data balancing, it is worth noting that there exist other methods of data balancing and with other design smells. Furthermore, it is also important to note that application of those other methods may improve the results, in our experiments SMOTE did not improve God class detection. The results are not fully generalizable because only one design smell is studied with projects developed in a single programming language, and only one balancing technique is used to compare with the imbalanced case. But these results are promising for the application in real design smells detection scenarios as mentioned above and the focus on other measures, such as Kappa, ROC, and MCC, have been used in the assessment of the classifier behavior.
    ISSN
    0950-5849
    Revisión por pares
    SI
    DOI
    10.1016/j.infsof.2021.106736
    Version del Editor
    https://doi.org/10.1016/j.infsof.2021.106736
    Propietario de los Derechos
    The Authors
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/74391
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP41 - Artículos de revista [109]
    Mostrar registro completo
    Arquivos deste item
    Nombre:
    1-s2.0-S0950584921001865-main.pdf
    Tamaño:
    2.669Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalExceto quando indicado o contrário, a licença deste item é descrito como Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10