Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/74394
Título
Exploratory study of the impact of project domain and size category on the detection of the God class design smell
Autor
Año del Documento
2021
Editorial
Springer Nature
Documento Fuente
Software Quality Journal 29, 197–237, 2021
Abstract
Design smell detection has proven to be an efficient strategy to improve software quality and consequently decrease maintainability expenses. This work explores the influence of the information about project context expressed as project domain and size category information, on the automatic detection of the god class design smell by machine learning techniques. A set of experiments using eight classifiers to detect god classes was conducted on a dataset containing 12, 587 classes from 24 Java projects. The results show that classifiers change their behavior when they are used on datasets that differ in these kinds of project information. The results show that god class design smell detection can be improved by feeding machine learning classifiers with this project context information.
ISSN
0963-9314
Revisión por pares
SI
Version del Editor
Propietario de los Derechos
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
Idioma
eng
Tipo de versión
info:eu-repo/semantics/acceptedVersion
Derechos
restrictedAccess
Collections
Files in this item