• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UVaDOCCommunitiesBy Issue DateAuthorsSubjectsTitles

    My Account

    Login

    Statistics

    View Usage Statistics

    Share

    View Item 
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Informática (Arquitectura y Tecnología de Computadores, Ciencias de la Computación e Inteligencia ...)
    • DEP41 - Artículos de revista
    • View Item
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Informática (Arquitectura y Tecnología de Computadores, Ciencias de la Computación e Inteligencia ...)
    • DEP41 - Artículos de revista
    • View Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/74394

    Título
    Exploratory study of the impact of project domain and size category on the detection of the God class design smell
    Autor
    Alkharabsheh, Khalid
    Crespo González Carvajal, YaniaAutoridad UVA Orcid
    Fernández Delgado, Manuel
    Viqueira, José R.
    Taboada González, José A.
    Año del Documento
    2021
    Editorial
    Springer Nature
    Documento Fuente
    Software Quality Journal 29, 197–237, 2021
    Abstract
    Design smell detection has proven to be an efficient strategy to improve software quality and consequently decrease maintainability expenses. This work explores the influence of the information about project context expressed as project domain and size category information, on the automatic detection of the god class design smell by machine learning techniques. A set of experiments using eight classifiers to detect god classes was conducted on a dataset containing 12, 587 classes from 24 Java projects. The results show that classifiers change their behavior when they are used on datasets that differ in these kinds of project information. The results show that god class design smell detection can be improved by feeding machine learning classifiers with this project context information.
    ISSN
    0963-9314
    Revisión por pares
    SI
    DOI
    10.1007/s11219-021-09550-5
    Version del Editor
    https://doi.org/10.1007/s11219-021-09550-5
    Propietario de los Derechos
    © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/74394
    Tipo de versión
    info:eu-repo/semantics/acceptedVersion
    Derechos
    restrictedAccess
    Collections
    • DEP41 - Artículos de revista [109]
    Show full item record
    Files in this item
    Nombre:
    SQJO-D-20-00091_R2_accepted_.pdf
    Tamaño:
    2.159Mb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10