• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Stöbern

    Gesamter BestandBereicheErscheinungsdatumAutorenSchlagwortenTiteln

    Mein Benutzerkonto

    Einloggen

    Statistik

    Benutzungsstatistik

    Compartir

    Dokumentanzeige 
    •   UVaDOC Startseite
    • WISSENSCHAFTLICHE ARBEITEN
    • Departamentos
    • Dpto. Informática (Arquitectura y Tecnología de Computadores, Ciencias de la Computación e Inteligencia ...)
    • DEP41 - Artículos de revista
    • Dokumentanzeige
    •   UVaDOC Startseite
    • WISSENSCHAFTLICHE ARBEITEN
    • Departamentos
    • Dpto. Informática (Arquitectura y Tecnología de Computadores, Ciencias de la Computación e Inteligencia ...)
    • DEP41 - Artículos de revista
    • Dokumentanzeige
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/74412

    Título
    Multimodal teaching analytics: Automated extraction of orchestration graphs from wearable sensor data
    Autor
    Prieto Santos, Luis Pablo
    Sharma, Kshitij
    Kidzinski, Łukasz
    Rodríguez Triana, María JesúsAutoridad UVA Orcid
    Dillenbourg, Pierre
    Año del Documento
    2018-01-24
    Editorial
    Wiley
    Descripción
    Producción Científica
    Documento Fuente
    Journal of Computer Assisted Learning, April 2018, vol. 34, n. 2, p.193-203
    Zusammenfassung
    The pedagogical modelling of everyday classroom practice is an interesting kind of evidence, both for educational research and teachers' own professional development. This paper explores the usage of wearable sensors and machine learning techniques to automatically extract orchestration graphs (teaching activities and their social plane over time) on a dataset of 12 classroom sessions enacted by two different teachers in different classroom settings. The dataset included mobile eye-tracking as well as audiovisual and accelerometry data from sensors worn by the teacher. We evaluated both time-independent and time-aware models, achieving median F1 scores of about 0.7–0.8 on leave-one-session-out k-fold cross-validation. Although these results show the feasibility of this approach, they also highlight the need for larger datasets, recorded in a wider variety of classroom settings, to provide automated tagging of classroom practice that can be used in everyday practice across multiple teachers.
    Palabras Clave
    activity detection
    eye-tracking
    multimodal learning analytics
    sensors
    teaching analytics
    Revisión por pares
    SI
    DOI
    10.1111/jcal.12232
    Patrocinador
    This research was supported by a Marie Curie Fellowship within the 7th European Community Framework Programme (MIOCTI, FP7‐ PEOPLE‐2012‐IEF Project 327384). It also was supported by the European Union's Horizon 2020 research and innovation programme (Grant Agreement 669074 and 731685) and by the U.S. National Institute of Health (Grant U54EB020405, awarded by the National Institute of Biomedical Imaging and Bioengineering through funds provided by the trans‐National Institutes of Health Big Data to Knowledge initiative).
    Version del Editor
    https://onlinelibrary.wiley.com/doi/epdf/10.1111/jcal.12232
    Propietario de los Derechos
    Wiley Online Library
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/74412
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    embargoedAccess
    Aparece en las colecciones
    • DEP41 - Artículos de revista [109]
    Zur Langanzeige
    Dateien zu dieser Ressource
    Nombre:
    Computer Assisted Learning - 2018 - Prieto - Multimodal teaching analytics Automated extraction of orchestration graphs.pdfEmbargado hasta: 3000-01-01
    Tamaño:
    911.9Kb
    Formato:
    Adobe PDF
    Descripción:
    Artículo principal
    Öffnen

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10