• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Stöbern

    Gesamter BestandBereicheErscheinungsdatumAutorenSchlagwortenTiteln

    Mein Benutzerkonto

    Einloggen

    Statistik

    Benutzungsstatistik

    Compartir

    Dokumentanzeige 
    •   UVaDOC Startseite
    • WISSENSCHAFTLICHE ARBEITEN
    • Departamentos
    • Dpto. Estadística e Investigación Operativa
    • DEP24 - Artículos de revista
    • Dokumentanzeige
    •   UVaDOC Startseite
    • WISSENSCHAFTLICHE ARBEITEN
    • Departamentos
    • Dpto. Estadística e Investigación Operativa
    • DEP24 - Artículos de revista
    • Dokumentanzeige
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/74477

    Título
    Graphical and computational tools to guide parameter choice for the cluster weighted robust model
    Autor
    Mayo Iscar, AgustínAutoridad UVA Orcid
    Greselin, Francesca
    García Escudero, Luis ÁngelAutoridad UVA Orcid
    Cappozzo, Andrea
    Año del Documento
    2023
    Editorial
    Taylor and Francis Ltd
    Documento Fuente
    Cappozzo, A., García-Escudero, L. A., Greselin, F., & Mayo-Iscar, A. (2023). Graphical and Computational Tools to Guide Parameter Choice for the Cluster Weighted Robust Model. Journal of Computational and Graphical Statistics, 32(3), 1195-1214.
    Zusammenfassung
    The Cluster Weighted Robust Model (CWRM) is a recently introduced methodology to robustly estimate mixtures of regressions with random covariates. The CWRM allows users to flexibly perform regression clustering, safeguarding it against data contamination and spurious solutions. Nonetheless, the resulting solution depends on the chosen number of components in the mixture, the percentage of impartial trimming, the degree of heteroscedasticity of the errors around the regression lines and of the clusters in the explanatory variables. Therefore an appropriate model selection is crucially required. Such a complex modeling task may generate several “legitimate” solutions: each one derived from a distinct hyper-parameters specification. The present paper introduces a two step-monitoring procedure to help users ffectively explore such a vast model space. The first phase uncovers the most appropriate percentages of trimming, whilst the second phase explores the whole set of solutions, conditioning on the outcome derived from the previous step. The final output singles out a set of “top” solutions, whose optimality, stability and validity is assessed. Novel graphical and computational tools - specifically tailored for the CWRM framework - will help the user make an educated choice among the optimal solutions. Three examples on real datasets showcase our proposal in action. Supplementary files for this article are available online.
    Revisión por pares
    SI
    DOI
    10.1080/10618600.2022.2154218
    Patrocinador
    Spanish Ministerio de Ciencia e Innovación, grant PID2021-128314NB-I00.
    Research Programme: “Integration between study design and data analytics for generating credible evidence in the field of healthcare from heterogeneous sources of structured and unstructured data”.
    Francesca Greselin work is supported by Milano-Bicocca University Fund for Scientific Research, 2019-ATE-0076.
    Version del Editor
    https://www.tandfonline.com/doi/abs/10.1080/10618600.2022.2154218
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/74477
    Tipo de versión
    info:eu-repo/semantics/draft
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP24 - Artículos de revista [78]
    Zur Langanzeige
    Dateien zu dieser Ressource
    Nombre:
    GraphicalComputationalTools.pdf
    Tamaño:
    9.365Mb
    Formato:
    Adobe PDF
    Thumbnail
    Öffnen

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10