Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/74516
Título
Deep Learning System for User Identification Using Sensors on Doorknobs
Año del Documento
2024
Editorial
MDPI
Descripción
Producción Científica
Documento Fuente
Sensors, Agosto 2024, vol. 24, n. 15.
Résumé
Door access control systems are important to protect the security and integrity of physical spaces. Accuracy and speed are important factors that govern their performance. In this paper, we investigate a novel approach to identify users by measuring patterns of their interactions with a doorknob via an embedded accelerometer and gyroscope and by applying deep-learning-based algorithms to these measurements. Our identification results obtained from 47 users show an accuracy of 90.2%. When the sex of the user is used as an input feature, the accuracy is 89.8% in the case of male individuals and 97.0% in the case of female individuals. We study how the accuracy is affected by the sample duration, finding that is its possible to identify users using a sample of 0.5 s with an accuracy of 68.5%. Our results demonstrate the feasibility of using patterns of motor activity to provide access control, thus extending with it the set of alternatives to be considered for behavioral biometrics.
Palabras Clave
access control
User identification
IoT
sensors
machine learning
ISSN
1424-8220
Revisión por pares
SI
Version del Editor
Propietario de los Derechos
CC BY 4.0 - © 2024 by the authors. Licensee MDPI, Basel, Switzerland
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Aparece en las colecciones
Fichier(s) constituant ce document
Nombre:
Tamaño:
1.414Mo
Formato:
Adobe PDF
Descripción:
Main article with cover
Excepté là où spécifié autrement, la license de ce document est décrite en tant que CC0 1.0 Universal