• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UVaDOCCommunitiesBy Issue DateAuthorsSubjectsTitles

    My Account

    Login

    Statistics

    View Usage Statistics

    Share

    View Item 
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Ingeniería de Sistemas y Automática
    • DEP44 - Comunicaciones a congresos, conferencias, etc.
    • View Item
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Ingeniería de Sistemas y Automática
    • DEP44 - Comunicaciones a congresos, conferencias, etc.
    • View Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/74723

    Título
    Obtaining accurate TSK Fuzzy Rule-Based Systems by Multi-Objective Evolutionary Learning in high-dimensional regression problems
    Autor
    Gacto, María José
    Galende Hernández, MartaAutoridad UVA Orcid
    Alcalá, Rafael
    Herrera, Francisco
    Congreso
    2013 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)
    Año del Documento
    2013
    Editorial
    IEEE
    Descripción Física
    7 p.
    Descripción
    Producción Científica
    Documento Fuente
    2013 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Hyderabad, India, 2013, pp. 1-7
    Abstract
    This paper addresses the challenging problem of fuzzy modeling in high-dimensional and large scale regression datasets. To this end, we propose a scalable two-stage method for obtaining accurate fuzzy models in high-dimensional regression problems using approximate Takagi-Sugeno-Kang Fuzzy Rule-Based Systems. In the first stage, we propose an effective Multi-Objective Evolutionary Algorithm, based on an embedded genetic Data Base learning (involved variables, granularities and a slight lateral displacement of fuzzy partitions) together with an inductive rule base learning within the same process. The second stage is a post-processing process based on a second MOEA to perform a rule selection and a fine scatter-based tuning of the Membership Functions. Moreover, it incorporates an efficient Kalman filter to estimate the coefficients of the consequent polynomial functions in the Takagi-Sugeno-Kang rules. In both stages, we include mechanisms in order to significantly improve the accuracy of the model and to ensure a fast convergence in high-dimensional regression problems. The proposed method is compared to the classical ANFIS method and to a well-known evolutionary learning algorithm for obtaining accurate TSK systems in 8 datasets with different sizes and dimensions, obtaining better results.
    ISBN
    978-1-4799-0022-0
    DOI
    10.1109/FUZZ-IEEE.2013.6622381
    Patrocinador
    Spanish Ministry of Education and Science under grant no. TIN2011-28488
    Spanish Ministry of Science and Innovation under grant no. DPI2009-14410-C02- 02
    Andalusian Government under grant no. P10-TIC- 6858
    Version del Editor
    https://ieeexplore.ieee.org/document/6622381
    Propietario de los Derechos
    IEEE
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/74723
    Tipo de versión
    info:eu-repo/semantics/acceptedVersion
    Derechos
    restrictedAccess
    Collections
    • DEP44 - Comunicaciones a congresos, conferencias, etc. [44]
    Show full item record
    Files in this item
    Nombre:
    2013-FuzzyIEEE_AuthorManuscript_gacto.pdf
    Tamaño:
    398.6Kb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10