• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Navegar

    Todo o repositórioComunidadesPor data do documentoAutoresAssuntosTítulos

    Minha conta

    Entrar

    Estatística

    Ver as estatísticas de uso

    Compartir

    Ver item 
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Departamentos
    • Dpto. Ingeniería de Sistemas y Automática
    • DEP44 - Comunicaciones a congresos, conferencias, etc.
    • Ver item
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Departamentos
    • Dpto. Ingeniería de Sistemas y Automática
    • DEP44 - Comunicaciones a congresos, conferencias, etc.
    • Ver item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/74723

    Título
    Obtaining accurate TSK Fuzzy Rule-Based Systems by Multi-Objective Evolutionary Learning in high-dimensional regression problems
    Autor
    Gacto, María José
    Galende Hernández, MartaAutoridad UVA Orcid
    Alcalá, Rafael
    Herrera, Francisco
    Congreso
    2013 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)
    Año del Documento
    2013
    Editorial
    IEEE
    Descripción Física
    7 p.
    Descripción
    Producción Científica
    Documento Fuente
    2013 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Hyderabad, India, 2013, pp. 1-7
    Resumo
    This paper addresses the challenging problem of fuzzy modeling in high-dimensional and large scale regression datasets. To this end, we propose a scalable two-stage method for obtaining accurate fuzzy models in high-dimensional regression problems using approximate Takagi-Sugeno-Kang Fuzzy Rule-Based Systems. In the first stage, we propose an effective Multi-Objective Evolutionary Algorithm, based on an embedded genetic Data Base learning (involved variables, granularities and a slight lateral displacement of fuzzy partitions) together with an inductive rule base learning within the same process. The second stage is a post-processing process based on a second MOEA to perform a rule selection and a fine scatter-based tuning of the Membership Functions. Moreover, it incorporates an efficient Kalman filter to estimate the coefficients of the consequent polynomial functions in the Takagi-Sugeno-Kang rules. In both stages, we include mechanisms in order to significantly improve the accuracy of the model and to ensure a fast convergence in high-dimensional regression problems. The proposed method is compared to the classical ANFIS method and to a well-known evolutionary learning algorithm for obtaining accurate TSK systems in 8 datasets with different sizes and dimensions, obtaining better results.
    ISBN
    978-1-4799-0022-0
    DOI
    10.1109/FUZZ-IEEE.2013.6622381
    Patrocinador
    Spanish Ministry of Education and Science under grant no. TIN2011-28488
    Spanish Ministry of Science and Innovation under grant no. DPI2009-14410-C02- 02
    Andalusian Government under grant no. P10-TIC- 6858
    Version del Editor
    https://ieeexplore.ieee.org/document/6622381
    Propietario de los Derechos
    IEEE
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/74723
    Tipo de versión
    info:eu-repo/semantics/acceptedVersion
    Derechos
    restrictedAccess
    Aparece en las colecciones
    • DEP44 - Comunicaciones a congresos, conferencias, etc. [44]
    Mostrar registro completo
    Arquivos deste item
    Nombre:
    2013-FuzzyIEEE_AuthorManuscript_gacto.pdf
    Tamaño:
    398.6Kb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10