• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UVaDOCCommunitiesBy Issue DateAuthorsSubjectsTitles

    My Account

    Login

    Statistics

    View Usage Statistics

    Share

    View Item 
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Ingeniería de Sistemas y Automática
    • DEP44 - Comunicaciones a congresos, conferencias, etc.
    • View Item
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Ingeniería de Sistemas y Automática
    • DEP44 - Comunicaciones a congresos, conferencias, etc.
    • View Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/75071

    Título
    Selection of rules by orthogonal transformations and genetic algorithms to improve the interpretability in fuzzy rule based systems
    Autor
    Rey Diez, María IsabelAutoridad UVA
    Galende Hernández, MartaAutoridad UVA Orcid
    Sáinz Palmero, Gregorio IsmaelAutoridad UVA Orcid
    Fuente Aparicio, María Jesús de laAutoridad UVA Orcid
    Congreso
    2013 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)
    Año del Documento
    2013
    Editorial
    IEEE
    Descripción Física
    9 p.
    Descripción
    Producción Científica
    Documento Fuente
    2013 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Hyderabad, India, 2013, pp. 1-8
    Abstract
    Fuzzy modeling is one of the best known techniques to model systems and processes. In most cases, as in data-driven fuzzy modeling, these fuzzy models reach a high accuracy, but show poor performance in complexity or interpretability, which are key aspects of Fuzzy Logic. There are several approaches in the literature to deal with the complexity and interpretability challenges for fuzzy rule based systems (FRBSs). In this paper, a post-processing approach is proposed via a genetic rule selection based on the relevance of each rule (using Orthogonal Transformations (OTs), in this case P-QR) and the well-known accuracy-interpretability trade-off. The main objective is to check the true significance, drawbacks and advantages of the rule selection based on OTs to manage the accuracy-interpretability trade-off. In order to achieve this aim, a neuro-fuzzy system (FasArtFuzzy Adaptive System ART based) and several case studies from the KEEL Project Repository are used to tune and check this selection of rules based on rule relevance by OTs, genetic selection and accuracy-interpretability trade-off. This neuro-fuzzy system generates Mamdani FRBSs, in an approximate way. SPEA2 is the multi-objective evolutionary algorithm (MOEA) tool used to tune the proposed rule selection, and different interpretability measures have been considered.
    Palabras Clave
    FRBS
    Orthogonal Transformations
    Interpretability
    Genetic Algorithm
    ISBN
    978-1-4799-0022-0
    DOI
    10.1109/FUZZ-IEEE.2013.6622357
    Patrocinador
    Spanish Ministry of Science and Innovation under grants nos. DPI2009-14410- C02-02 and DPI2012-39381-C02-02
    Version del Editor
    https://ieeexplore.ieee.org/document/6622357
    Propietario de los Derechos
    IEEE
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/75071
    Tipo de versión
    info:eu-repo/semantics/acceptedVersion
    Derechos
    restrictedAccess
    Collections
    • DEP44 - Comunicaciones a congresos, conferencias, etc. [44]
    Show full item record
    Files in this item
    Nombre:
    2013-FuzzyIEEE_AuthorManuscript_margal.pdf
    Tamaño:
    305.4Kb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10