• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Ricerca

    Tutto UVaDOCArchiviData di pubblicazioneAutoriSoggettiTitoli

    My Account

    Login

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Mostra Item 
    •   UVaDOC Home
    • PRODUZIONE SCIENTIFICA
    • Departamentos
    • Dpto. Ingeniería Agrícola y Forestal
    • DEP42 - Artículos de revista
    • Mostra Item
    •   UVaDOC Home
    • PRODUZIONE SCIENTIFICA
    • Departamentos
    • Dpto. Ingeniería Agrícola y Forestal
    • DEP42 - Artículos de revista
    • Mostra Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/75699

    Título
    State of the Art for Solar and Wind Energy-Forecasting Methods for Sustainable Grid Integration
    Autor
    Lafuente-Cacho, Marta
    Izquierdo-Monge, Oscar
    Peña-Carro, Paula
    Hernández-Jiménez, Ángel
    Callejo, Luis Hernández
    Losada, Ana María Palomares
    Lamadrid, Ángel Luis Zorita
    Año del Documento
    2025
    Editorial
    Springer Nature
    Descripción
    Producción Científica
    Documento Fuente
    Current Sustainable/Renewable Energy Reports, (2025) 12:13
    Abstract
    Forecasting renewable energy generation is crucial for improving the efficiency and reliability of power systems that integrate wind, solar, and other renewable sources. These energy sources are inherently variable, depending on changing weather patterns, which makes accurate forecasting a complex task. The ability to predict renewable energy production with high accuracy can help grid operators optimize energy storage, reduce the reliance on fossil fuels, and ensure grid stability. Forecasting methods vary significantly, ranging from physical models that rely on weather data, to statistical models and advanced machine learning techniques. Each method has its own strengths and limitations, and the choice of approach often depends on the specific requirements, such as time horizon, data availability, and computational resources.
    Revisión por pares
    SI
    DOI
    10.1007/s40518-025-00262-z
    Version del Editor
    https://link.springer.com/article/10.1007/s40518-025-00262-z
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/75699
    Tipo de versión
    info:eu-repo/semantics/acceptedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP42 - Artículos de revista [291]
    Mostra tutti i dati dell'item
    Files in questo item
    Nombre:
    s40518-025-00262-z.pdf
    Tamaño:
    1.089Mb
    Formato:
    Adobe PDF
    Thumbnail
    Mostra/Apri

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10