• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Stöbern

    Gesamter BestandBereicheErscheinungsdatumAutorenSchlagwortenTiteln

    Mein Benutzerkonto

    Einloggen

    Statistik

    Benutzungsstatistik

    Compartir

    Dokumentanzeige 
    •   UVaDOC Startseite
    • WISSENSCHAFTLICHE ARBEITEN
    • Departamentos
    • Dpto. Informática (Arquitectura y Tecnología de Computadores, Ciencias de la Computación e Inteligencia ...)
    • DEP41 - Comunicaciones a congresos, conferencias, etc.
    • Dokumentanzeige
    •   UVaDOC Startseite
    • WISSENSCHAFTLICHE ARBEITEN
    • Departamentos
    • Dpto. Informática (Arquitectura y Tecnología de Computadores, Ciencias de la Computación e Inteligencia ...)
    • DEP41 - Comunicaciones a congresos, conferencias, etc.
    • Dokumentanzeige
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/75777

    Título
    Accelerating Scientific Model Optimization with a Pipelined FPGA-Based Differential Evolution Engine
    Autor
    Castro Caballero, Manuel DeAutoridad UVA Orcid
    Osorio, Roberto R.
    Torres de la Sierra, YuriAutoridad UVA Orcid
    Llanos Ferraris, Diego RafaelAutoridad UVA Orcid
    Congreso
    33rd IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM)
    Año del Documento
    2025
    Editorial
    IEE
    Descripción Física
    Póster
    Descripción
    Producción Científica
    Documento Fuente
    33rd IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM), Fayetteville, Arkansas, USA
    Zusammenfassung
    Differential Evolution (DE) [5] with Numerical Integration (NI) is an ideal target for Custom Computing Machines on FPGAs, since it produces deep pipelines, requires minimal external memory bandwidth, and benefits from large memory bandwidth. DE is a genetic algorithm used for scientific model optimization. We propose a generic FPGA-based DE architecture, parameterized to accommodate to different scientific models. It supports both non-adaptive and adaptive NI methods. The core DE engine is programmed in VHDL for high adaptability and performance, whereas the scientific models and their NI are programmed in C++ for flexibility and easiness of development.
    Materias (normalizadas)
    Informática
    Materias Unesco
    1203 Ciencia de Los Ordenadores
    3304 Tecnología de Los Ordenadores
    DOI
    10.13140/RG.2.2.22570.94403
    Patrocinador
    This work was supported in part by Grant PID2022-142292NB-I00 (NATASHA Project); by grant TED2021–130367B–I00, funded by MCIN/AEI/10.13039/501100011033; and by MCIN/AEI/10.13039/501100011033 through the EU Grant PID2022-136435NB-I00. Manuel de Castro has been supported by a FPU 2022 grant. This research was supported by grants from NVIDIA and utilized NVIDIA A100.
    Version del Editor
    https://www.researchgate.net/publication/391892110_Accelerating_Scientific_Model_Optimization_with_a_Pipelined_FPGA-Based_Differential_Evolution_Engine
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/75777
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP41 - Comunicaciones a congresos, conferencias, etc. [101]
    Zur Langanzeige
    Dateien zu dieser Ressource
    Nombre:
    FCCM25_Poster.pdf
    Tamaño:
    560.4Kb
    Formato:
    Adobe PDF
    Thumbnail
    Öffnen
    Nombre:
    FCCM_extended_abstract.pdf
    Tamaño:
    81.91Kb
    Formato:
    Adobe PDF
    Thumbnail
    Öffnen

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10