Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/75777
Título
Accelerating Scientific Model Optimization with a Pipelined FPGA-Based Differential Evolution Engine
Autor
Congreso
33rd IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM)
Año del Documento
2025
Editorial
IEE
Descripción Física
Póster
Descripción
Producción Científica
Documento Fuente
33rd IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM), Fayetteville, Arkansas, USA
Abstract
Differential Evolution (DE) [5] with Numerical Integration (NI) is an ideal target for Custom Computing Machines on FPGAs, since it produces deep pipelines, requires minimal external memory bandwidth, and benefits from large memory bandwidth. DE is a genetic algorithm used for scientific model optimization. We propose a generic FPGA-based DE architecture, parameterized to accommodate to different scientific models. It supports both non-adaptive and adaptive NI methods. The core DE engine is programmed in VHDL for high adaptability and performance, whereas the scientific models and their NI are programmed in C++ for flexibility and easiness of development.
Materias (normalizadas)
Informática
Materias Unesco
1203 Ciencia de Los Ordenadores
3304 Tecnología de Los Ordenadores
Patrocinador
This work was supported in part by Grant PID2022-142292NB-I00 (NATASHA Project); by grant TED2021–130367B–I00, funded by MCIN/AEI/10.13039/501100011033; and by MCIN/AEI/10.13039/501100011033 through the EU Grant PID2022-136435NB-I00. Manuel de Castro has been supported by a FPU 2022 grant. This research was supported by grants from NVIDIA and utilized NVIDIA A100.
Version del Editor
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Collections
Files in this item