• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Ricerca

    Tutto UVaDOCArchiviData di pubblicazioneAutoriSoggettiTitoli

    My Account

    Login

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Mostra Item 
    •   UVaDOC Home
    • PRODUZIONE SCIENTIFICA
    • Departamentos
    • Dpto. Estadística e Investigación Operativa
    • DEP24 - Artículos de revista
    • Mostra Item
    •   UVaDOC Home
    • PRODUZIONE SCIENTIFICA
    • Departamentos
    • Dpto. Estadística e Investigación Operativa
    • DEP24 - Artículos de revista
    • Mostra Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/75789

    Título
    Improving the computational performance of TCLUST through ensemble initialization
    Autor
    Álvarez Esteban, Pedro CésarAutoridad UVA Orcid
    García Escudero, Luis ÁngelAutoridad UVA Orcid
    Mayo Iscar, AgustínAutoridad UVA Orcid
    Crespo Guerrero, Javier
    Año del Documento
    2025
    Editorial
    Springer Nature
    Descripción
    Producción Científica
    Documento Fuente
    Adv Data Anal Classif (2025). https://doi.org/10.1007/s11634-025-00642-9
    Abstract
    Outliers are known to be detrimental to widely used clustering techniques. Robust clustering alternatives have been introduced to better resist outlying observations. Among these, robust clustering methods based on trimming have proven effective by allowing the removal of a fraction of observations where outliers are likely to be found, with TCLUST being one of the most popular for handling elliptically contoured clusters. The algorithm for applying TCLUST can be seen as an extension of the concentration steps used in the fast-MCD algorithm for computing the Minimum Covariance Determinant. However, obtaining good initializations for these concentration steps in TCLUST is more complex than in MCD. This initialization task is particularly challenging unless both the number of clusters and the dimensionality are small. To address this, a new ensemble initialization procedure for TCLUST will be presented, which takes advantage of partially correct information from all iterated random initializations rather than focusing solely on the best individual one found. Initial experiments suggest that this methodology could improve the computational performance of the standard TCLUST algorithm.
    Materias Unesco
    62H30
    62H11
    62G35
    Palabras Clave
    Cluster analysis
    Robustness
    Trimming
    Model-based clustering
    ISSN
    1862-5347
    Revisión por pares
    SI
    DOI
    10.1007/s11634-025-00642-9
    Patrocinador
    Open access funding provided by FEDER European Funds and the Junta de Castilla y León under the Research and Innovation Strategy for Smart Specialization (RIS3) of Castilla y León 2021-2027. This research has been partially supported by grant PID2021-128314NB-I00 funded by MCIN/AEI/10.13039/501100011033/FEDER and Junta Castilla y León grant VA064G24.
    Version del Editor
    https://link.springer.com/article/10.1007/s11634-025-00642-9
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/75789
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • IMUVA - Artículos de Revista [104]
    • DEP24 - Artículos de revista [78]
    Mostra tutti i dati dell'item
    Files in questo item
    Nombre:
    2025_ADAC_Improving the computational performance of TCLUST through ensemble initialization.pdf
    Tamaño:
    1.994Mb
    Formato:
    Adobe PDF
    Descripción:
    Versión de la editorial (pdf)
    Thumbnail
    Mostra/Apri
    Nombre:
    11634_2025_642_MOESM1_ESM.pdf
    Tamaño:
    609.9Kb
    Formato:
    Adobe PDF
    Descripción:
    Material suplementario
    Thumbnail
    Mostra/Apri
    Atribución-NoComercial-CompartirIgual 4.0 InternacionalLa licencia del ítem se describe como Atribución-NoComercial-CompartirIgual 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10