Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/75789
Título
Improving the computational performance of TCLUST through ensemble initialization
Autor
Año del Documento
2025
Editorial
Springer Nature
Descripción
Producción Científica
Documento Fuente
Adv Data Anal Classif (2025). https://doi.org/10.1007/s11634-025-00642-9
Resumo
Outliers are known to be detrimental to widely used clustering techniques. Robust clustering alternatives have been introduced to better resist outlying observations. Among these, robust clustering methods based on trimming have proven effective by allowing the removal of a fraction of observations where outliers are likely to be found, with TCLUST being one of the most popular for handling elliptically contoured clusters.
The algorithm for applying TCLUST can be seen as an extension of the concentration steps used in the fast-MCD algorithm for computing the Minimum Covariance Determinant. However, obtaining good initializations for these concentration steps in TCLUST is more complex than in MCD. This initialization task is particularly challenging unless both the number of clusters and the dimensionality are small. To address this, a new ensemble initialization procedure for TCLUST will be presented, which takes advantage of partially correct information from all iterated random initializations rather than focusing solely on the best individual one found. Initial experiments suggest that this methodology could improve the computational performance of the standard TCLUST algorithm.
Materias Unesco
62H30
62H11
62G35
Palabras Clave
Cluster analysis
Robustness
Trimming
Model-based clustering
ISSN
1862-5347
Revisión por pares
SI
Patrocinador
Open access funding provided by FEDER European Funds and the Junta de Castilla y León under the Research and Innovation Strategy for Smart Specialization (RIS3) of Castilla y León 2021-2027. This research has been partially supported by grant PID2021-128314NB-I00 funded by MCIN/AEI/10.13039/501100011033/FEDER and Junta Castilla y León grant VA064G24.
Version del Editor
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Aparece en las colecciones
Arquivos deste item
Nombre:
Tamaño:
1.994Mb
Formato:
Adobe PDF
Descripción:
Versión de la editorial (pdf)
Nombre:
Tamaño:
609.9Kb
Formato:
Adobe PDF
Descripción:
Material suplementario
