Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/76030
Título
Global bifurcation diagrams for coercive third-degree polynomial ordinary differential equations with recurrent nonautonomous coefficients
Año del Documento
2025
Editorial
Elsevier
Descripción
Producción Científica
Documento Fuente
Journal of Differential Equations, 2025, vol. 435, p.113315
Zusammenfassung
Nonautonomous bifurcation theory is a growing branch of mathematics, for the insight it provides into
radical changes in the global dynamics of realistic models for many real-world phenomena, i.e., into the oc-
currence of critical transitions. This paper describes several global bifurcation diagrams for nonautonomous
first order scalar ordinary differential equations generated by coercive third degree polynomials in the state
variable. The conclusions are applied to a population dynamics model subject to an Allee effect that is weak
in the absence of migration and becomes strong under a migratory phenomenon whose sense and intensity
depend on a threshold in the number of individuals in the population.
Materias Unesco
12 Matemáticas
Palabras Clave
Nonautonomous dynamical systems
Nonautonomous bifurcation theory
Critical transitions
Population models
ISSN
0022-0396
Revisión por pares
SI
Version del Editor
Propietario de los Derechos
© 2025 The Author(s)
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Aparece en las colecciones
Dateien zu dieser Ressource
