• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UVaDOCCommunitiesBy Issue DateAuthorsSubjectsTitles

    My Account

    Login

    Statistics

    View Usage Statistics

    Share

    View Item 
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Matemática Aplicada
    • DEP51 - Artículos de revista
    • View Item
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Matemática Aplicada
    • DEP51 - Artículos de revista
    • View Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/76100

    Título
    Two dynamical approaches to the notion of exponential separation for random systems of delay differential equations
    Autor
    Kryspin, Marek
    Mierczyński, Janusz
    Obaya, RafaelAutoridad UVA
    Novo, SylviaAutoridad UVA Orcid
    Año del Documento
    2025
    Editorial
    Royal Society of Edinburgh
    Descripción
    Producción Científica
    Documento Fuente
    Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 2025, p. 1-39
    Abstract
    This paper deals with the exponential separation of type II, an important concept for random systems of differential equations with delay, introduced in Mierczyński et al. [18]. Two different approaches to its existence are presented. The state space X will be a separable ordered Banach space with, dual space, and positive cone normal and reproducing. In both cases, appropriate cooperativity and irreducibility conditions are assumed to provide a family of generalized Floquet subspaces. If in addition is also separable, one obtains an exponential separation of type II. When this is not the case, but there is an Oseledets decomposition for the continuous semiflow, the same result holds. Detailed examples are given for all the situations, including also a case where the cone is not normal.
    Materias (normalizadas)
    Differential equations
    Random equations
    ISSN
    0308-2105
    Revisión por pares
    SI
    DOI
    10.1017/prm.2025.15
    Version del Editor
    https://www.cambridge.org/core/journals/proceedings-of-the-royal-society-of-edinburgh-section-a-mathematics/article/two-dynamical-approaches-to-the-notion-of-exponential-separation-for-random-systems-of-delay-differential-equations/6527EB25FEFBC2DD1B3BF06DB0C5CE54
    Propietario de los Derechos
    © 2025 The Author(s)
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/76100
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Collections
    • DEP51 - Artículos de revista [147]
    Show full item record
    Files in this item
    Nombre:
    Two-dynamical-approaches-to-the-notion-of-exponential-separation-for-random-systems-of-delay-differential-equations.pdf
    Tamaño:
    714.7Kb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalExcept where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10