• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UVaDOCCommunitiesBy Issue DateAuthorsSubjectsTitles

    My Account

    Login

    Statistics

    View Usage Statistics

    Share

    View Item 
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Grupos de Investigación
    • Grupo de Sistemas Inteligentes y Cooperativos/Educación, Medios, Informática y Cultura (GSIC/EMIC)
    • GSIC - Artículos de revista
    • View Item
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Grupos de Investigación
    • Grupo de Sistemas Inteligentes y Cooperativos/Educación, Medios, Informática y Cultura (GSIC/EMIC)
    • GSIC - Artículos de revista
    • View Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/76150

    Título
    Disentangling doctoral well-being support in progress-focused workshops: Combining qualitative and quantitative data in single-case learning analytics
    Autor
    Dimitriadis, Yannis
    Prieto Santos, Luis PabloAutoridad UVA
    Jovanovic, Jelena
    Odriozola González, PaulaAutoridad UVA Orcid
    Rodríguez Triana, María JesúsAutoridad UVA Orcid
    Díaz Chavarría, Henry Benjamín
    Dimitriadis, Yannis
    Año del Documento
    2025
    Editorial
    Elsevier
    Descripción
    Producción Científica
    Documento Fuente
    Learning and Individual Differences, 2025, vol. 121, p. 102705
    Abstract
    Doctoral education (DE) suffers from widespread well-being issues. Recent evidence from short-term training actions shows potential to address them, but also large variability. Further, DE practitioners face challenges in understanding whether (and for whom) such interventions work, due to small sample sizes, short intervention durations, and the inherent uniqueness of each dissertation. This methodological paper proposes a novel, practice-oriented, and idiographic approach to such understanding, supported by learning analytics of quanti- tative and qualitative data. To illustrate this approach, we apply it to two datasets from six authentic doctoral workshops (N = 105 doctoral students), showcasing how it can provide individualized practice-oriented insights to doctoral students and help trainers better understand their interventions, while coping with typical limitations of data from doctoral training. These findings exemplify how the triangulation of simple, interpretable analytics models of mixed longitudinal data can improve students, practitioners’, and researchers’ understanding, re- design, and personalization of such training actions. Educational relevance and implications statement: Collecting data about the context and process of a doctoral training action can help practitioners and students understand who benefits more (or less) from such training. The individualized analysis of such data, obtained with even very simple technologies, can also help students understand their processes and contexts, to better address progress and well-being issues. The use of student- authored short narratives (e.g., diaries), along with longitudinal quantitative data, plays an important role in these personalized analyses, and the promise of automated qualitative coding makes this approach increasingly feasible
    Materias Unesco
    58 Pedagogía
    Palabras Clave
    Doctoral education
    Learning analytics
    Well-being
    Idiographic methods
    Mixed methods
    ISSN
    1041-6080
    Revisión por pares
    SI
    DOI
    10.1016/j.lindif.2025.102705
    Patrocinador
    Ministerio de Ciencia, Innovación y Universidades MCIN/AEI/10.13039/ 501100011033 (grants PID2020-112584RB- C32 and PID2023-146692OB-C32) and (grants RYC2021-032273-I and RYC2022-037806-I)
    Junta de Castilla y León (grant VA176P23)
    Version del Editor
    https://www.sciencedirect.com/science/article/pii/S1041608025000810
    Propietario de los Derechos
    © 2025 The Author(s)
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/76150
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Collections
    • GSIC - Artículos de revista [15]
    Show full item record
    Files in this item
    Nombre:
    Disentangling-doctoral-well-being-support.pdf
    Tamaño:
    3.689Mb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen
    Atribución-NoComercial 4.0 InternacionalExcept where otherwise noted, this item's license is described as Atribución-NoComercial 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10