• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo UVaDOCComunidadesPor fecha de publicaciónAutoresMateriasTítulos

    Mi cuenta

    Acceder

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Comunicaciones a congresos, conferencias, etc.
    • Ver ítem
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Comunicaciones a congresos, conferencias, etc.
    • Ver ítem
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/76157

    Título
    STEROCEN: Simulation and Training Environment for Resource Orchestration in Cloud-Edge Networks
    Autor
    Ferens Michalek, Mieszko Jan
    Hortelano Haro, DiegoAutoridad UVA
    Miguel Jiménez, Ignacio deAutoridad UVA Orcid
    Durán Barroso, Ramón JoséAutoridad UVA Orcid
    Kosta, Sokol
    Congreso
    2024 15th International Conference on Network of the Future (NoF)
    Año del Documento
    2024
    Editorial
    IEEE
    Descripción
    Producción Científica
    Documento Fuente
    15th International Conference on Network of the Future (NoF), Castelldefels, Spain, 2024, pp. 133-141
    Resumen
    Large scale deployment of Internet-of-Things (IoT) devices is projected to grow in the coming years. These devices are expected to be low-cost while supporting applications with growing computational demands. To enable the necessary computations, offloading of computational tasks to Edge and Cloud nodes is a fundamental technology. However, orchestration for such networks is a complex problem which affects both the network design and the decision system. To aid in solving this problem, simulation tools are essential for predicting the performance of networks in different conditions and under different orchestration policies. In this paper, we propose STEROCEN, a Cloud-Edge network resource orchestration simulation and training tool which allows for different configurations of up-to a four-layer network composed of: (i) end-device, (ii) Close Edge, (iii) Far Edge, and (iv) Cloud layers. Our tool collects delay metrics for flexibly defined applications, especially in regard to computation in the network nodes and including uncertainty in processing times. Additionally, the tool only needs the initial configuration and an independently defined orchestrator, allowing for testing of many strategies. As an example, we provide results of testing some Deep Reinforcement Learning (DRL) algorithms using the same training and simulation environment.
    Palabras Clave
    Simulator
    Orchestration
    Edge-Cloud Computing
    Computation Offloading
    Reinforcement Learning
    IoT
    DOI
    10.1109/NoF62948.2024.10741443
    Patrocinador
    EU H2020 MSCA ITN-ETN IoTalentum (grant no. 953442)
    Ministerio de Ciencia e Innovación y Agencia Estatal de Investigación (Proyecto PID2020-112675RB-C42 financiado por MCIN/AEI/10.13039/501100011033)
    Consejería de Educación de la Junta de Castilla y León y FEDER (VA231P20)
    Version del Editor
    https://ieeexplore.ieee.org/abstract/document/10741443
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/76157
    Tipo de versión
    info:eu-repo/semantics/acceptedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP71 - Comunicaciones a congresos, conferencias, etc. [129]
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    Nombre:
    NoF_2024_Ferens_et_al.pdf
    Tamaño:
    421.0Kb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalLa licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10