Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/76925
Título
Enhancing photovoltaic cell classification through Mamdani Fuzzy logic: a comparative study with machine learning approaches employing electroluminescence images
Autor
Año del Documento
2025
Editorial
Springer
Descripción
Producción Científica
Documento Fuente
Progress in Artificial Intelligence, 2025, vol. 14, p. 49-59.
Resumen
This study introduces a Mamdani Fuzzy Logic model designed to classify solar cells based on their energetic performance. The model incorporates three distinct inputs, namely the proportions of black pixels, gray pixels, and white pixels, extracted from Electroluminescence images of the cells. Additionally, an output is included to signal potential issues with input data. The development of the model involved utilizing cells with known performance, determined through the measurement of Intensity-Voltage Curves. The efficacy of the model was demonstrated through testing with a validation set, yielding an accuracy rate of 99.0% in the Polycrystalline dataset and 98% in the Monocrystalline. In comparison, traditional machine learning methods such as Ensemble Classifiers and Decision Trees achieved inferior accuracy rates. These results show the superior problem-solving capability of the presented Fuzzy Logic model over conventional machine-learning approaches.
Materias Unesco
3322 Tecnología energética
Palabras Clave
Fuzzy logic
Photovoltaic
Electroluminescence
Machine learning
ISSN
2192-6352
Revisión por pares
SI
Patrocinador
"Contratos Predoctorales UVA 2020" funded by Universidad de Valladolid and Santander Bank
Project "PID2020-113533RB-C33" financed by Spanish Ministry of Science and Innovation
"Convenio general de cooperación entre la Universidad de Valladolid (España) y la Corporación Universidad de la Costa (Colombia)"
ERASMUS+ KA-107 from the Universidad of Valladolid
MOVILIDAD DE DOCTORANDOS Y DOCTORANDAS UVa 2023 from the University of Valladolid
Project "PID2020-113533RB-C33" financed by Spanish Ministry of Science and Innovation
"Convenio general de cooperación entre la Universidad de Valladolid (España) y la Corporación Universidad de la Costa (Colombia)"
ERASMUS+ KA-107 from the Universidad of Valladolid
MOVILIDAD DE DOCTORANDOS Y DOCTORANDAS UVa 2023 from the University of Valladolid
Version del Editor
Propietario de los Derechos
© Springer
Idioma
eng
Tipo de versión
info:eu-repo/semantics/acceptedVersion
Derechos
restrictedAccess
Aparece en las colecciones
Ficheros en el ítem
Nombre:
Enhancing_Photovoltaic_Cell_Classification_Springer.pdfEmbargado hasta: 2025-11-14
Tamaño:
2.835Mb
Formato:
Adobe PDF