• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UVaDOCCommunitiesBy Issue DateAuthorsSubjectsTitles

    My Account

    Login

    Statistics

    View Usage Statistics

    Share

    View Item 
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Escuela de Doctorado (ESDUVa)
    • Tesis doctorales UVa
    • View Item
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Escuela de Doctorado (ESDUVa)
    • Tesis doctorales UVa
    • View Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/77737

    Título
    Edge Computing-Enabled Networks: Strategic MEC Deployment and Dynamic Task Scheduling
    Autor
    Masoumi Estahbanati, Maryam
    Director o Tutor
    Durán Barroso, Ramón JoséAutoridad UVA
    Miguel Jiménez, Ignacio deAutoridad UVA
    Editor
    Universidad de Valladolid. Escuela de DoctoradoAutoridad UVA
    Año del Documento
    2025
    Titulación
    Doctorado en Tecnologías de la Información y las Telecomunicaciones
    Abstract
    Telecommunication operators are increasingly adopting Network Function Virtualization (NFV) and Multi-access Edge Computing (MEC) to meet the ultra-low latency and high reliability demands of 5G/6G services. These technologies enable the delivery of services through Service Function Chains (SFCs) composed of Virtual Network Functions (VNFs), utilizing computing resources near end users. A key challenge in this architecture is the efficient allocation of resources and the strategic placement of MEC sites to host VNFs. This thesis introduces a novel approach to efficiently determine MEC site locations to enhance dynamic network performance. Instead of conducting exhaustive and time-consuming simulations to evaluate each potential selection of MEC sites, we propose a precomputed load balance metric approach. By leveraging the Jain Fairness Index (JFI), promising site selections can be quickly identified. Our research demonstrates a statistically significant negative monotonic relationship between precomputed JFI and blocking probability when SFCs are dynamically established and released. This method allows network operators to prioritize detailed simulations only for the most promising MEC site combinations, significantly reducing the computational burden while improving network planning and operation. Beyond telecommunication networks, the principles of edge computing are also highly relevant for Industry 4.0. Efficient resource allocation and task scheduling are crucial in industrial extreme-edge computing, particularly for Automated Guided Vehicles (AGVs). These mobile, resource-limited devices leverage embedded edge computing to minimize latency in dynamic operations. In this context, this thesis also introduces a Queue-Aware Scheduling and Deadlock Mitigation Strategy (QASDMS) to enhance multi-AGV coordination by enabling concurrent movement and data processing. Simulation results show that QASDMS improves resource utilization and reduces operation time. This research bridges edge computing with industrial automation, offering scalable and intelligent optimization strategies for next-generation infrastructures.
     
     
    Materias (normalizadas)
    Telecomunicaciones
    Materias Unesco
    33 Ciencias Tecnológicas
    Palabras Clave
    Edge computing
    MEC site placement
    Task planning
    AGV
    Departamento
    Escuela de Doctorado
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/77737
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Collections
    • Tesis doctorales UVa [2442]
    Show full item record
    Files in this item
    Nombre:
    TESIS-2510-250915.pdf
    Tamaño:
    4.398Mb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen
    Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcept where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 International

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10