• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UVaDOCCommunitiesBy Issue DateAuthorsSubjectsTitles

    My Account

    Login

    Statistics

    View Usage Statistics

    Share

    View Item 
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Electricidad y Electrónica
    • DEP22 - Artículos de revista
    • View Item
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Electricidad y Electrónica
    • DEP22 - Artículos de revista
    • View Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/77892

    Título
    Atomistic study of dislocation formation during Ge epitaxy on Si
    Autor
    Martín Encinar, LuisAutoridad UVA Orcid
    Marqués Cuesta, Luis AlbertoAutoridad UVA Orcid
    Santos Tejido, IvánAutoridad UVA Orcid
    Pelaz Montes, María LourdesAutoridad UVA Orcid
    Año del Documento
    2026
    Editorial
    Elsevier
    Descripción
    Producción Científica
    Documento Fuente
    Applied Surface Science Volume 715, 2026, 164547
    Abstract
    We performed classical molecular dynamics simulations to investigate, from an atomistic point of view, the formation of dislocations during the epitaxial growth of Ge on Si. We show that simulations at 900 and 1000 K with deposition rates of 10 monolayers per second provide a good compromise between computational cost and accuracy. In these conditions, the ratio between the Ge deposition rate and the ad-atom jump rate is analogous to that of out-of-equilibrium experiments. In addition, the main features of the grown film (intermixing, critical film thickness, dislocation typology, and surface morphology) are well described. Our simulations reveal that dislocations originate in low-density amorphous regions that form under valleys of the rough Ge film surface. Atoms are squeezed out of these regions to the surface, releasing the stress accumulated in the film and smoothing its roughness. Amorphous regions grow until atoms begin to rearrange in dislocation half-loops that propagate throughout the Ge film. The threading arm ends of the dislocation half-loops move along the surface following valleys and avoiding islands. The film surface morphology affects the propagation path of the dislocation half-loops and the resulting dislocation network.
    Materias (normalizadas)
    Molecular dynamics
    Dinámica molecular
    Materias Unesco
    3312 Tecnología de Materiales
    ISSN
    0169-4332
    Revisión por pares
    SI
    DOI
    10.1016/j.apsusc.2025.164547
    Patrocinador
    Ministerio de Ciencia, Innovación y Universidades/ Agencia Estatal de Investigación (AEI) 10.13039/501100011033 - Project No. PID2020-115118GB-I00
    Version del Editor
    https://www.sciencedirect.com/science/article/pii/S0169433225022639
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/77892
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Collections
    • Electrónica - Artículos de revista [35]
    • DEP22 - Artículos de revista [68]
    Show full item record
    Files in this item
    Nombre:
    2025_MartinEncinar_ASS_715 (002).pdf
    Tamaño:
    4.776Mb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalExcept where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10