• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Ricerca

    Tutto UVaDOCArchiviData di pubblicazioneAutoriSoggettiTitoli

    My Account

    Login

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Mostra Item 
    •   UVaDOC Home
    • PRODUZIONE SCIENTIFICA
    • Grupos de Investigación
    • Grupo de Ingeniería Biomédica
    • GIB - Artículos de revista
    • Mostra Item
    •   UVaDOC Home
    • PRODUZIONE SCIENTIFICA
    • Grupos de Investigación
    • Grupo de Ingeniería Biomédica
    • GIB - Artículos de revista
    • Mostra Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/78210

    Título
    Integrative and interpretable framework to unveil the neurophysiological fingerprint of Alzheimer’s disease and mild cognitive impairment: A machine learning-SHAP approach
    Autor
    Gutierrez De Pablo, VictorAutoridad UVA Orcid
    Herrero Tudela, MaríaAutoridad UVA Orcid
    Sandonís Fernández, Marina
    Poza Crespo, JesúsAutoridad UVA Orcid
    Maturana Candelas, AaronAutoridad UVA Orcid
    Rodríguez González, VíctorAutoridad UVA
    Tola Arribas, Miguel ÁngelAutoridad UVA Orcid
    Cano, Mónica
    Hoshi, Hideyuki
    Shigihara, Yoshihito
    Hornero Sánchez, RobertoAutoridad UVA Orcid
    Gómez, Carlos
    Año del Documento
    2025
    Editorial
    Elsevier
    Descripción
    Producción Científica
    Documento Fuente
    Biocybernetics and Biomedical Engineering, 2025, vol. 45, n. 3, p. 438-450
    Abstract
    Dementia and mild cognitive impairment (MCI) due to Alzheimer’s disease (AD) are neurological pathologies associated with disruptions in brain electromagnetic activity, typically studied using magnetoencephalography (MEG) and electroencephalography (EEG). To quantify diverse brain properties, different families of param- eters can be computed from MEG and EEG (i.e., spectral, non-linear, morphological, functional connectivity, or network structure and organisation). However, studying these characteristics separately overlooks the com- plex nature of brain activity. Integrative frameworks can be useful to unveil the intricate neurophysiological fingerprint, as well as to characterise pathological conditions comprehensively. To that purpose, data fusion methodologies are crucial, despite their interpretational challenges. In this study, Machine Learning (ML) mod- els were trained to discriminate between groups of severity, whereas the SHapley Additive eXplanations (SHAP) algorithm was afterwards utilised to assess the relevance of the input characteristics into the output classifica- tion. Three databases were analysed: MEG (55 healthy controls, HC, 42 MCI patients, and 86 AD patients), EEG1 (51 HC, 52 MCI, and 100 AD), and EEG2 (45 HC, 69 MCI, and 82 AD). The best results for the three-class classi- fication problem were obtained by Gradient Boosting for the MEG database: 3-class Cohen’s kappa coefficient of 0.5452 and accuracy of 72.63 %. Afterwards, using SHAP on Gradient Boosting, it has been shown that spectral features were identified as highly relevant across all databases. Furthermore, morphology measures presented high relevance for the MEG database, whereas EEG1 and EEG2 databases showed functional connectivity and multiplex organisation measures, respectively, as relevant subgroups of parameters. Finally, commonly relevant features across databases were selected using SHAP to generate the neurophysiological fingerprints of AD and MCI. This study highlights the relevance of different MEG and EEG parameters in characterising neurological pathologies. The proposed framework, based on MEG and EEG, can be used to generate interpretable, robust, and accurate neurophysiological fingerprints of AD and MCI.
    Materias Unesco
    32 Ciencias Médicas
    33 Ciencias Tecnológicas
    Palabras Clave
    Alzheimer’s disease
    Mild cognitive impairment
    Machine learning
    SHAP
    Magnetoencephalography
    Electroencephalography
    Neurophysiological fingerprint
    ISSN
    0208-5216
    Revisión por pares
    SI
    DOI
    10.1016/j.bbe.2025.05.011
    Patrocinador
    This research was funded by “MICIU/AEI/10.13039/ 501100011033” and by “ERDF A way of making Europe” through the project PID2022-138286NB-I00 and by “CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)” through “Instituto de Salud Carlos III” co-funded with ERDF fund (CONTFPI-2023-40).
    Version del Editor
    https://www.sciencedirect.com/science/article/pii/S0208521625000397
    Propietario de los Derechos
    © 2025 The Author(s)
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/78210
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • GIB - Artículos de revista [40]
    Mostra tutti i dati dell'item
    Files in questo item
    Nombre:
    Integrative-interpretable-framework.pdf
    Tamaño:
    4.282Mb
    Formato:
    Adobe PDF
    Thumbnail
    Mostra/Apri
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalLa licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10