• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo UVaDOCComunidadesPor fecha de publicaciónAutoresMateriasTítulos

    Mi cuenta

    Acceder

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Ver ítem
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Ver ítem
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/78725

    Título
    Deep Reinforcement Learning-Based Task Scheduling and Resource Allocation for Vehicular Edge Computing: A Survey
    Autor
    Li, Peisong
    Wang, Xinheng
    Li, Changle
    Iqbal, Muddesar
    Al-Dulaimi, Anwer
    I, Chih-Lin
    Casaseca de la Higuera, Juan PabloAutoridad UVA Orcid
    Año del Documento
    2025
    Editorial
    IEEE
    Descripción
    Producción Científica
    Documento Fuente
    IEEE Transactions on Intelligent Transportation Systems, 2025, p. 1-30.
    Resumen
    With the development of intelligent transportation systems, vehicular edge computing (VEC) has played a pivotal role by integrating computation, storage, and analytics closer to the vehicles. VEC represents a paradigm shift towards real-time data processing and intelligent decision-making, overcoming challenges associated with latency and resource constraints. In VEC scenarios, the efficient scheduling and allocation of computing resources are fundamental research areas, enabling real-time processing of vehicular tasks and intelligent decision-making. This paper provides a comprehensive review of the latest research in Deep Reinforcement Learning (DRL)-based task scheduling and resource allocation in VEC environments. Firstly, the paper outlines the development of VEC and introduces the core concepts of DRL, shedding light on their growing importance in the dynamic VEC landscape. Secondly, the state-of-the-art research in DRL-based task scheduling and resource allocation is categorized, reviewed, and discussed. Finally, the paper discusses current challenges in the field, offering insights into the promising future of VEC applications within the realm of intelligent transportation systems.
    Materias (normalizadas)
    Computación periférica vehicular
    Aprendizaje profundo por refuerzo
    Programación de tareas
    Asignación de recursos
    ISSN
    1524-9050
    Revisión por pares
    SI
    DOI
    10.1109/TITS.2025.3607910
    Patrocinador
    Prince Sultan Defence Studies and Research Centre (PSDSRC): PID000085_01_04 and PID-000085_01_03
    National Natural Science Foundation of China: 52175030 and 62231020
    Innovation Capability Support Program of Shaanxi: 2024RS-CXTD-0
    Technology Innovation Leading Program of Shaanxi: 2023KXJ-116
    European Union Horizon 2020 Research and Innovation Program: Marie Sklodowska-Curie (101008297)
    Version del Editor
    https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11173255
    Propietario de los Derechos
    © 2025 IEEE. Todos los derechos reservados
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/78725
    Tipo de versión
    info:eu-repo/semantics/acceptedVersion
    Derechos
    restrictedAccess
    Aparece en las colecciones
    • DEP71 - Artículos de revista [368]
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    Nombre:
    Deep Reinforcement Learning-based Task Scheduling.pdf
    Tamaño:
    4.781Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10