• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Navegar

    Todo o repositórioComunidadesPor data do documentoAutoresAssuntosTítulos

    Minha conta

    Entrar

    Estatística

    Ver as estatísticas de uso

    Compartir

    Ver item 
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Departamentos
    • Dpto. Estadística e Investigación Operativa
    • DEP24 - Comunicaciones a congresos, conferencias, etc.
    • Ver item
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Departamentos
    • Dpto. Estadística e Investigación Operativa
    • DEP24 - Comunicaciones a congresos, conferencias, etc.
    • Ver item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/78814

    Título
    Adapting to Change: Robust Counterfactual Explanations in Dynamic Data Landscapes
    Autor
    Prenkaj, Bardh
    Villaizán Vallelado, MarioAutoridad UVA Orcid
    Leemann, Tobias
    Kasneci, Gjergji
    Congreso
    Machine Learning and Principles and Practice of Knowledge Discovery in Databases - International Workshops of ECML PKDD 2023
    Año del Documento
    2025
    Editorial
    Springer Science and Business Media Deutschland GmbH
    Descripción Física
    12
    Descripción
    Producción Científica
    Documento Fuente
    Meo, Rosa y Silvestri, Fabrizio. Machine Learning and Principles and Practice of Knowledge Discovery in Databases International Workshops of ECML PKDD 2023. Turín, 2025, p. 325-337.
    Resumo
    We introduce a novel semi-supervised Graph Counterfactual Explainer (GCE) methodology, Dynamic GRAph Counterfactual Explainer (DyGRACE). It leverages initial knowledge about the data distribution to search for valid counterfactuals while avoiding using information from potentially outdated decision functions in subsequent time steps. Employing two graph autoencoders (GAEs), DyGRACE learns the representation of each class in a binary classification scenario. The GAEs minimise the reconstruction error between the original graph and its learned representation during training. The method involves (i) optimising a parametric density function (implemented as a logistic regression function) to identify counterfactuals by maximising the factual autoencoder’s reconstruction error, (ii) minimising the counterfactual autoencoder’s error, and (iii) maximising the similarity between the factual and counterfactual graphs. This semi-supervised approach is independent of an underlying black-box oracle. A logistic regression model is trained on a set of graph pairs to learn weights that aid in finding counterfactuals. At inference, for each unseen graph, the logistic regressor identifies the best counterfactual candidate using these learned weights, while the GAEs can be iteratively updated to represent the continual adaptation of the learned graph representation over iterations. DyGRACE is quite effective and can act as a drift detector, identifying distributional drift based on differences in reconstruction errors between iterations. It avoids reliance on the oracle’s predictions in successive iterations, thereby increasing the efficiency of counterfactual discovery. DyGRACE, with its capacity for contrastive learning and drift detection, will offer new avenues for semi-supervised learning and explanation generation.
    Materias (normalizadas)
    Explicabilidad contrafactual gráfica
    Explicabilidad dinámica
    Explicaciones dependientes del tiempo
    ISBN
    9783031746291
    DOI
    10.1007/978-3-031-74630-7_22
    Patrocinador
    PNRR MUR: PE0000013- FAIR
    Version del Editor
    https://link.springer.com/chapter/10.1007/978-3-031-74630-7_22
    Propietario de los Derechos
    © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/78814
    Tipo de versión
    info:eu-repo/semantics/submittedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP24 - Comunicaciones a congresos, conferencias, etc. [22]
    Mostrar registro completo
    Arquivos deste item
    Nombre:
    Adapting to Change.pdf
    Tamaño:
    415.7Kb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10