• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Navegar

    Todo o repositórioComunidadesPor data do documentoAutoresAssuntosTítulos

    Minha conta

    Entrar

    Estatística

    Ver as estatísticas de uso

    Compartir

    Ver item 
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Departamentos
    • Dpto. Estadística e Investigación Operativa
    • DEP24 - Comunicaciones a congresos, conferencias, etc.
    • Ver item
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Departamentos
    • Dpto. Estadística e Investigación Operativa
    • DEP24 - Comunicaciones a congresos, conferencias, etc.
    • Ver item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/78833

    Título
    AdSight: Scalable and Accurate Quantification of User Attention in Multi-Slot Sponsored Search
    Autor
    Villaizán Vallelado, MarioAutoridad UVA Orcid
    Salvatori, Matteo
    Latifzadeh, Kayhan
    Penta, Antonio
    Leiva, Luis A.
    Arapakis, Ioannis
    Congreso
    SIGIR 2025 - Proceedings of the 48th International ACM SIGIR Conference on Research and Development in Information Retrieval
    Año del Documento
    2025
    Editorial
    Association for Computing Machinery, Inc
    Descripción Física
    10 p.
    Descripción
    Producción Científica
    Documento Fuente
    Nicola Ferro, Maria Maistro, Gabriella Pasi, Omar Alonso, Andrew Trotman, Suzan Verberne. SIGIR '25: Proceedings of the 48th International ACM SIGIR Conference on Research and Development in Information Retrieval. Padua, 2025, p. 255-265.
    Resumo
    Modern Search Engine Results Pages (SERPs) present complex layouts where multiple elements compete for visibility. Attention modelling is crucial for optimising web design and computational advertising, whereas attention metrics can inform ad placement and revenue strategies. We introduce AdSight, a method leveraging mouse cursor trajectories to quantify in a scalable and accurate manner user attention in multi-slot environments like SERPs. AdSight uses a novel Transformer-based sequence-to-sequence architecture where the encoder processes cursor trajectory embeddings, and the decoder incorporates slot-specific features, enabling robust attention prediction across various SERP layouts. We evaluate our approach on two Machine Learning tasks: (1)~regression, to predict fixation times and counts; and (2)~classification, to determine some slot types were noticed. Our findings demonstrate the model's ability to predict attention with unprecedented precision, offering actionable insights for researchers and practitioners.
    Materias (normalizadas)
    SERP
    Búsqueda patrocinada
    Publicidad online
    Seguimiento del cursor del ratón
    Anuncios multiespacio
    Visualizaciones directas
    Atención del usuario
    Redes neuronales
    ISBN
    9798400715921
    DOI
    10.1145/3726302.3729891
    Patrocinador
    European Innovation Council (Pathfinder program): SYMBIOTIK project, grant 101071147
    Version del Editor
    https://dl.acm.org/doi/pdf/10.1145/3726302.3729891
    Propietario de los Derechos
    © 2025 Copyright held by the owner/author(s).
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/78833
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP24 - Comunicaciones a congresos, conferencias, etc. [22]
    Mostrar registro completo
    Arquivos deste item
    Nombre:
    AdSight. Scalable and Accurate Quantification.pdf
    Tamaño:
    27.74Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalExceto quando indicado o contrário, a licença deste item é descrito como Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10