• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UVaDOCCommunitiesBy Issue DateAuthorsSubjectsTitles

    My Account

    Login

    Statistics

    View Usage Statistics

    Share

    View Item 
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Estadística e Investigación Operativa
    • DEP24 - Comunicaciones a congresos, conferencias, etc.
    • View Item
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Estadística e Investigación Operativa
    • DEP24 - Comunicaciones a congresos, conferencias, etc.
    • View Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/78835

    Título
    Tackling Missing Data Head-On: Strategies to Mitigate Survival and Confirmation Bias
    Autor
    Villaizán Vallelado, MarioAutoridad UVA Orcid
    Salvatori, Matteo
    Carro Martínez, BelénAutoridad UVA Orcid
    Sánchez Esguevillas, Antonio JavierAutoridad UVA Orcid
    Congreso
    18th International Work-Conference on Artificial Neural Networks
    Año del Documento
    2025
    Editorial
    IWANN, A coruña
    Descripción Física
    1 p.
    Descripción
    Producción Científica
    Documento Fuente
    Andreu Catalá, Gonzalo Joya y Ignacio Rojas. IWANN 2025 18th International Work-Conference on Artificial Neural Networks. A Coruña: IWANN, 2025, p. 1-1.
    Abstract
    Most Artificial Intelligence models require the information in the records to be used to be fully informed. These models require a policy for handling missing information. However, traditional policies have tried to fill in the missing information with known information. This approach is correct when the missing information is random and wrong when it is not. In this article we start with a review of the main policies employed, and analyse the consequences of elimination or imputation policies and argue that these policies are sometimes unwise.
    ISBN
    979-13-8752213-1
    Version del Editor
    https://iwann.uma.es/wp-content/uploads/2025/06/IWANN2025_Abstract_ISBN.pdf
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/78835
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Collections
    • DEP24 - Comunicaciones a congresos, conferencias, etc. [22]
    Show full item record
    Files in this item
    Nombre:
    Tackling Missing Data Head.pdf
    Tamaño:
    206.1Kb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalExcept where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10