Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/78835
Título
Tackling Missing Data Head-On: Strategies to Mitigate Survival and Confirmation Bias
Autor
Congreso
18th International Work-Conference on Artificial Neural Networks
Año del Documento
2025
Editorial
IWANN, A coruña
Descripción Física
1 p.
Descripción
Producción Científica
Documento Fuente
Andreu Catalá, Gonzalo Joya y Ignacio Rojas. IWANN 2025 18th International Work-Conference on Artificial Neural Networks. A Coruña: IWANN, 2025, p. 1-1.
Resumo
Most Artificial Intelligence models require the information in the records to be used to be fully informed. These models require a policy for handling missing information. However, traditional policies have tried to fill in the missing information with known information. This approach is correct when the missing information is random and wrong when it is not. In this article we start with a review of the main policies employed, and analyse the consequences of elimination or imputation policies and argue that these policies are sometimes unwise.
ISBN
979-13-8752213-1
Version del Editor
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Aparece en las colecciones
Arquivos deste item
Exceto quando indicado o contrário, a licença deste item é descrito como Attribution-NonCommercial-NoDerivatives 4.0 Internacional










