• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Navegar

    Todo o repositórioComunidadesPor data do documentoAutoresAssuntosTítulos

    Minha conta

    Entrar

    Estatística

    Ver as estatísticas de uso

    Compartir

    Ver item 
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Departamentos
    • Dpto. Ciencia de los Materiales e Ingeniería Metalúrgica, Expresión Gráfica en la Ingeniería, Ingeniería Cartográfica, ..
    • DEP07 - Artículos de revista
    • Ver item
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Departamentos
    • Dpto. Ciencia de los Materiales e Ingeniería Metalúrgica, Expresión Gráfica en la Ingeniería, Ingeniería Cartográfica, ..
    • DEP07 - Artículos de revista
    • Ver item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/78984

    Título
    Neuro-fuzzy optimization of cutting tool geometry in machining using Sugeno and Mamdani inference models
    Autor
    Vicente-García, Luis
    Santos Martín, Francisco JavierAutoridad UVA Orcid
    Merino Gómez, ElenaAutoridad UVA Orcid
    San Juan Blanco, ManuelAutoridad UVA Orcid
    Año del Documento
    2025
    Editorial
    Springer
    Descripción
    Producción Científica
    Documento Fuente
    Vicente-García, L., Santos-Martín, F., Merino-Gómez, E. et al. Neuro-fuzzy optimization of cutting tool geometry in machining using Sugeno and Mamdani inference models. Int J Adv Manuf Technol (2025). https://doi.org/10.1007/s00170-025-16742-x
    Resumo
    This study presents the design and validation of zero-order Sugeno and Mamdani fuzzy inference systems applied to the estimation of optimal cutting tool angles in machining processes. The input variables considered were the tool destruction energy (D) and the material’s specific cutting energy (U), while the output variables corresponded to the clearance angle (αn), rake angle (γn), and cutting-edge inclination angle (λs). Based on a real dataset of 81 experimental values, a synthetic database of 118,300 records was generated using an adaptive neuro-fuzzy inference system (ANFIS) trained via the backpropagation algorithm, achieving a reliability level of 85%. Both models were implemented in MATLAB using Gaussian membership functions with nine rules per output variable. The Sugeno model employed constant outputs, whereas the Mamdani model used linguistic labels. Validation was performed through the calculation of the cutting-edge angle (βn), derived from αn and γn, by comparing the outputs of both systems. The normalized relative root mean square error (rMSE) was found to be below 6.5%, indicating a high level of agreement between the two models. The results demonstrate that fuzzy inference systems—particularly when integrated with neuro-fuzzy architectures like ANFIS—are effective tools for addressing geometric optimization problems in industrial environments characterized by uncertainty and complexity. It is concluded that this approach provides a robust and accurate alternative for computer-aided cutting tool design.
    Materias Unesco
    3310.05 Ingeniería de Procesos
    Palabras Clave
    Neuro-fuzzy systems
    ANFIS
    Tool geometry optimization
    Machining process
    ISSN
    0268-3768
    Revisión por pares
    SI
    DOI
    10.1007/s00170-025-16742-x
    Patrocinador
    Open access funding provided by FEDER European Funds and the Junta de Castilla y León under the Research and Innovation Strategy for Smart Specialization (RIS3) of Castilla y León 2021-2027.
    Version del Editor
    https://link.springer.com/article/10.1007/s00170-025-16742-x
    Propietario de los Derechos
    © The Author(s) 2025
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/78984
    Tipo de versión
    info:eu-repo/semantics/acceptedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP07 - Artículos de revista [57]
    Mostrar registro completo
    Arquivos deste item
    Nombre:
    Vicente-Garc-a_et_al-2025-The_International_Journal_of_Advanced_Manufacturing_Technology.pdf
    Tamaño:
    1.293Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10