Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/79155
Título
Bisymmetric nonnegative Jacobi matrix realizations
Autor
Año del Documento
2025
Editorial
Taylor&Francis
Descripción
Producción Científica
Documento Fuente
Linear and Multulinear Algebra, Vol 73, n 9, p.1984-2011
Résumé
Within the symmetric inverse eigenvalue problem, the case of bisym-
metric Jacobi matrices occupies a central place, since for any strictly
monotone list of n real numbers there exists a unique bisymmetric
Jacobi matrix realizing the list. Apart from their meaning in several
issues such as physics, mechanics, statistics, to cite some of them, the
families of this kind of matrices whose spectrum is known are used
as models for testing the different algorithms to recover the entries
of matrices from spectra data. However, the spectrum is known only
for a few families of bisymmetric Jacobi matrices and the examples
mainly refer to the case when the spectrum is given by a linear or
quadratic function of the order and of the row index. In the first
part of this paper, we join all known cases by proving a general
result about bisymmetric Jacobi realizations of strictly monotone
sequences that are quadratic at most. In the second part, we focus on
the non-negative bisymmetric realizations, obtaining new necessary
conditions for a given list to be realized by a non-negative bisymmet-
ric Jacobi matrix. The main novelty in our techniques is considering
the gaps between the eigenvalues instead of focusing on the eigen-
values themselves. In the last part of this paper, we explicitly obtain
the bisymmetric realization of any list for order less or equal to 6.
Palabras Clave
Jacobi matrix; non-negative matrix; realization; bisymmetric matrix
ISSN
0308-1087
Revisión por pares
SI
Patrocinador
This work has been partly supported by the Spanish Research Council (Comisión Interministe- rialdeCienciayTecnología)underprojectPID2021-122501NB-I00,thefundsAGRUPS-2022and AGRUPS-2023byUniversitatPolitècnicadeCatalunya,andalsobyGrantPID2022-138906NB-C22 fundedbyMCIN/AEI/10.13039/501100011033andbyERDE‘AwayofmakingEurope’.
Version del Editor
Propietario de los Derechos
Taylor&Francis
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
restrictedAccess
Aparece en las colecciones
Fichier(s) constituant ce document
 Excepté là où spécifié autrement, la license de ce document est décrite en tant que  CC0 1.0 Universal
Excepté là où spécifié autrement, la license de ce document est décrite en tant que  CC0 1.0 Universal










