Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/79844
Título
An explainable deep learning approach for sleep staging in sleep apnea patients across all age subgroups from pulse oximetry signals
Autor
Año del Documento
2025
Editorial
Elsevier
Descripción
Producción Científica
Documento Fuente
Engineering Applications of Artificial Intelligence, 2025, vol. 162, p. 112562
Abstract
Deep-learning (DL) approaches have been developed using pulse rate (PR) and blood oxygen saturation (SpO2)
recordings from pulse oximetry to streamline sleep staging, particularly for obstructive sleep apnea (OSA) pa-
tients. However, lack of interpretability and validation across patients from a wide range of ages (children,
adolescents, adults, and elderly OSA individuals) are two major concerns. In this study, a DL model based on the
U-Net framework (POxi-SleepNet) was tailored to accurately perform 4-class sleep staging (wake, light sleep,
deep sleep, and rapid-eye movement sleep) in OSA patients across all age subgroups using PR and SpO2 signals.
An explainable artificial intelligence (XAI) methodology based on semantic segmentation via gradient-weighted
class activation mapping (Seg-Grad-CAM) was also applied to quantitatively interpret the time and frequency
characteristics of pulse oximetry recordings that influence sleep stage classification. Overnight PR and SpO2
signals from 17303 sleep studies from six datasets encompassing children, adolescents, adults, and elderly OSA
individuals were used. POxi-SleepNet showed high performance for sleep staging in the six databases, with
accuracies between 81.5 % and 84.5 % and Cohen’s kappa values from 0.726 to 0.779. It also demonstrated
greater generalizability than previous studies. XAI analysis showed the key contributions of mean and variability
in PR and SpO2 amplitude, as well as changes in their spectral content across specific frequency bands
(0.004–0.020 Hz, 0.020–0.100 Hz, and 0.180–0.400 Hz), for sleep stage classification. These findings indicate
that POxi-SleepNet could effectively automate sleep staging and assist in diagnosing OSA across all age groups in
clinical settings.
Materias Unesco
32 Ciencias Médicas
Palabras Clave
Age subgroups
Deep learning
Explainable artificial intelligence
Pulse oximetry
Obstructive sleep apnea
Sleep stages
ISSN
0952-1976
Revisión por pares
SI
Patrocinador
Ministerio de Ciencia, Innovación - MCIN/AEI/10.13039/50110001103, el Fondo Social (FSE+) y la Unión Europea. “NextGenerationEU”/PRTR (projects PID2023-148895OB-I00, PID2020-115468RB-I00, and CPP2022-009735)
Esta investigación fue cofinanciada por la Unión Europea a través del Programa Interreg VI-A España-Portugal (POCTEP) 2021-2027 (0043_NET4SLEEP_2_E)
Consorcio del Centro de Investigación Biomédica en Red (CIBER) en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) (CB19/01/00012) a través del Instituto de Salud Carlos III (ISCIII), cofinanciado con el Fondo Europeo de Desarrollo Regional
Instituto de Salud Carlos III (ISCIII), cofinanciada por el FSE+ (beca «Sara Borrell» (CD23/00031))
Ministerio de Ciencia e Innovación - MCIN/AEI/10.13039/501100011033 y el Fondo Social Europeo «Invertir en tu futuro» (beca «Ramón y Cajal» (RYC2019-028566-I))
Instituto Nacional sobre el Envejecimiento (grant AG061824)
Esta investigación fue cofinanciada por la Unión Europea a través del Programa Interreg VI-A España-Portugal (POCTEP) 2021-2027 (0043_NET4SLEEP_2_E)
Consorcio del Centro de Investigación Biomédica en Red (CIBER) en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) (CB19/01/00012) a través del Instituto de Salud Carlos III (ISCIII), cofinanciado con el Fondo Europeo de Desarrollo Regional
Instituto de Salud Carlos III (ISCIII), cofinanciada por el FSE+ (beca «Sara Borrell» (CD23/00031))
Ministerio de Ciencia e Innovación - MCIN/AEI/10.13039/501100011033 y el Fondo Social Europeo «Invertir en tu futuro» (beca «Ramón y Cajal» (RYC2019-028566-I))
Instituto Nacional sobre el Envejecimiento (grant AG061824)
Version del Editor
Propietario de los Derechos
© 2025 The Author(s)
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Collections
Files in this item
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional










