• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UVaDOCCommunitiesBy Issue DateAuthorsSubjectsTitles

    My Account

    Login

    Statistics

    View Usage Statistics

    Share

    View Item 
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • View Item
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • View Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/80134

    Título
    ML-Driven User Activity-Based GNSS Activation for Power Optimization in Resource-Constrained Environments
    Autor
    Paddy Junior, Asiimwe
    Enrique Díez, Luis
    Bahillo Martínez, AlfonsoAutoridad UVA Orcid
    Steven Eyobu, Odongo
    Bahillo, Alfonso
    Año del Documento
    2025
    Editorial
    IEEE
    Descripción
    Producción Científica
    Documento Fuente
    IEEE Transactions on Instrumentation and Measurement, 2025, vol. 74, n. 9531220, pp. 1-20.
    Abstract
    The aging population represents an increasing burden on healthcare systems, which is shifting policies from institutionalization to aging in the community. Remote monitoring offers efficient solutions that bridge the gaps between healthcare and where elderly people really want to live every day. However, the adoption of such systems remains low, especially in resource-constrained environments like underdeveloped regions and rural areas, due to the lack of resources often taken for granted in system design. Location is one of the main types of information to monitor, as it provides information about behavior and physical activity. Global Navigation Satellite System (GNSS) is the de facto technology, and although its high-power consumption aligns poorly with battery-powered devices, it is still the best choice for accurate and reliable remote localization of pedestrians. Deciding when to turn on/off the GNSS receiver based on context is a key strategy for power optimization, the two main types of contexts being the user’s position and activity. However, existing methods in the literature are not suitable for resource-constrained environments because they require the installation of beacons, which entail additional cost and power consumption, or assume the availability of external signals that are not met in such environments, or are based on simple user activity detection. This work proposes a new GNSS activation method based on detecting the specific walking activity for changing locations. In resource-constrained rural environments, people typically spend most of their time outdoors near their houses, where it is not necessary to activate the GNSS so frequently to monitor them. Restricting the GNSS activation to the moments in which they are moving to a different location could be enough and would reduce the power consumption. Four machine learning (ML) classification models [long short-term memory (LSTM), extreme gradient boosting (XGBoost), support vector machine (SVM), and random forest (RF)] have been implemented and evaluated using a smartwatch’s inertial sensor data. The best model, XGBoost, was exported to a custom-designed embedded system and evaluated in real-world tests. It demonstrated over 40% power savings compared to conventional motion-based methods.
    Palabras Clave
    Global Navigation Satellite System (GNSS) activation
    inertial sensors
    localization
    machine learning
    positioning
    power optimization
    resource-constrained environment
    tracking
    user activity
    ISSN
    0018-9456
    Revisión por pares
    SI
    DOI
    10.1109/TIM.2025.3597626
    Patrocinador
    European Union’s Horizon 2020 Research and Innovation Program bajo el proyecto MarieSkłodowska-Curie 847624
    REPNIN++ bajo el proyecto RED2022-134355-T
    Ministerio de Ciencia, Innovación y Universidades a través del proyecto AGINPLACE financiado por MICIU/AEI/10.13039/501100011033 y FEDER, UE, bajo el proyecto PID2023-146254OA-C44 y el proyecto PID2023-146254OB-C41
    Gobierno de Uganda a través de Makerere University Research Innovation Fund (RIF) y CoCIS
    Version del Editor
    https://ieeexplore.ieee.org/document/11122668
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/80134
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Collections
    • DEP71 - Artículos de revista [373]
    Show full item record
    Files in this item
    Nombre:
    ML-Driven_User_Activity-Based_GNSS_Activation_for_Power_Optimization_in_Resource-Constrained_Environments.pdf
    Tamaño:
    3.971Mb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen
    Atribución 4.0 InternacionalExcept where otherwise noted, this item's license is described as Atribución 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10