• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UVaDOCCommunitiesBy Issue DateAuthorsSubjectsTitles

    My Account

    Login

    Statistics

    View Usage Statistics

    Share

    View Item 
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • View Item
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • View Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/80154

    Título
    Leveraging Synthetic Data to Develop a Machine Learning Model for Voiding Flow Rate Prediction From Audio Signals
    Autor
    Alvarez, Marcos Lazaro
    Bahillo Martínez, AlfonsoAutoridad UVA Orcid
    Arjona, Laura
    Marcelo Nogueira, Diogo
    Ferreira Gomes, Elsa
    Jorge, Alípio M.
    Año del Documento
    2025
    Editorial
    IEEE
    Descripción
    Producción Científica
    Documento Fuente
    IEEE Access, 2025, vol. 13, pp. 127240-127251
    Abstract
    Sound-based uroflowmetry (SU) is a non-invasive technique emerging as an alternative to traditional uroflowmetry (UF) to calculate the voiding flow rate based on the sound generated by the urine impacting the water in a toilet, enabling remote monitoring and reducing the patient burden and clinical costs. This study trains four different machine learning (ML) models (random forest, gradient boosting, support vector machine and convolutional neural network) using both regression and classification approaches to predict and categorize the voiding flow rate from sound events. The models were trained with a dataset that contains sounds from synthetic void events generated with a high precision peristaltic pump and a traditional toilet. Sound was simultaneously recorded with three devices: Ultramic384k, Mi A1 smartphone and Oppo Smartwatch. To extract the audio features, our analysis showed that segmenting the audio signals into 1000 ms segments with frequencies up to 16 kHz provided the best results. Results show that random forest achieved the best performance in both regression and classification tasks, with a mean absolute error (MAE) of 0.9, 0.7 and 0.9 ml/s and quadratic weighted kappa (QWK) of 0.99, 1.0 and 1.0 for the three devices. To evaluate the models in a real environment and assess the effectiveness of training with synthetic data, the best-performing models were retrained and validated using a real voiding sounds dataset. The results reported an MAE below 2.5 ml/s and a QWK above 0.86 for regression and classification tasks, respectively.
    Palabras Clave
    Machine learning
    non-invasive voiding monitoring
    sound-based uroflowmetry
    sound voiding signals
    voiding flow estimation
    ISSN
    2169-3536
    Revisión por pares
    SI
    DOI
    10.1109/ACCESS.2025.3590626
    Patrocinador
    Ministerio de Ciencia, Innovación y Universidades (MICIU) a través del proyecto SWALU CPP2022-010045
    2020 ‘‘Ayuda para contratos predoctorales’’ financiada por MICIU y la Agencia Estatal de Investigación (AEI), 10.13039/501100011033 y cofinanciada por el Fondo Social Europeo (FSE) bajo el lema ‘‘FSE invierte en tu futuro,’’ proyecto PRE2020-095612
    Gobierno Vasco a través del Hazitek Program bajo el proyecto BATHMIC ZL-2024/00481
    Ministerio a través del proyecto Aginplace financiado por MICIU, AEI/10.13039/501100011033 y por la Unión Europea (UE) a través del Fondo Europeo de Desarrollo Regional (FEDER), proyecto PID2023-146254OB-C41 y PID2023-146254OA-C44
    Version del Editor
    https://ieeexplore.ieee.org/document/11084787
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/80154
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Collections
    • DEP71 - Artículos de revista [373]
    Show full item record
    Files in this item
    Nombre:
    Leveraging_Synthetic_Data_to_Develop_a_Machine_Learning_Model_for_Voiding_Flow_Rate_Prediction_From_Audio_Signals.pdf
    Tamaño:
    1.642Mb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen
    Atribución 4.0 InternacionalExcept where otherwise noted, this item's license is described as Atribución 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10