• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Stöbern

    Gesamter BestandBereicheErscheinungsdatumAutorenSchlagwortenTiteln

    Mein Benutzerkonto

    Einloggen

    Statistik

    Benutzungsstatistik

    Compartir

    Dokumentanzeige 
    •   UVaDOC Startseite
    • WISSENSCHAFTLICHE ARBEITEN
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Dokumentanzeige
    •   UVaDOC Startseite
    • WISSENSCHAFTLICHE ARBEITEN
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Dokumentanzeige
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/80188

    Título
    Flow prediction in sound-based uroflowmetry
    Autor
    Alvarez, Marcos Lazaro
    Arjona, Laura
    Jojoa Acosta, Mario FernandoAutoridad UVA Orcid
    Bahillo Martínez, AlfonsoAutoridad UVA Orcid
    Año del Documento
    2025
    Editorial
    Springer Nature
    Descripción
    Producción Científica
    Documento Fuente
    Scientific Reports, vol. 15, n. 643
    Zusammenfassung
    Sound-based uroflowmetry (SU) offers a non-invasive alternative to traditional uroflowmetry (UF) for evaluating lower urinary tract dysfunctions, enabling home-based testing and reducing the need for clinic visits. This study compares SU and UF in estimating urine flow rate and voided volume in 50 male volunteers (aged 18–60), with UF results from a Minze uroflowmeter as the reference standard. Audio signals recorded during voiding were segmented and machine learning algorithms (gradient boosting, random forest, and support vector machine) estimated flow parameters from three devices: Ultramic384k, Mi A1 smartphone, and Oppo smartwatch. The mean absolute error for flow rate estimation were 2.6, 2.5 and 2.9 ml/s, with R2 values of 84%, 83%, and 79%, respectively. Analysis of the Ultramic384k’s frequency range showed that the 0–8 kHz band contained 83% of significant components, suggesting higher sampling frequencies are unnecessary. A 1000 ms segment size was optimal for balancing computational efficiency and accuracy. Lin’s concordance coefficients for urine flow and voided volume using the smartwatch (0–8 kHz, 1000 ms) were 0.9 and 0.85, respectively, demonstrating that SU is a reliable, cost-effective alternative to UF for estimating key uroflowmetry parameters, with added patient convenience.
    Palabras Clave
    Acoustic voiding signals
    Flow prediction
    Machine learning
    Sound-based uroflowmetry
    ISSN
    2045-2322
    Revisión por pares
    SI
    DOI
    10.1038/s41598-024-84978-w
    Patrocinador
    Ministerio de Ciencia, Innovación y Universidades (MICIU) a través del proyecto SWALU CPP2022-010045 y ‘Ayuda para contratos predoctorales 2020 (ref. PRE2020-095612)' financiado por MICIU/AEI /10.13039/501100011033 y cofinanciado por FSE invierte en tu futuro
    Ministerio a través del proyecto Aginplace (ref. PID2023-146254OB-C41 y ref. PID2023-146254OA-C44)
    Version del Editor
    https://www.nature.com/articles/s41598-024-84978-w#citeas
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/80188
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP71 - Artículos de revista [378]
    Zur Langanzeige
    Dateien zu dieser Ressource
    Nombre:
    Flow prediction in sound-based uroflowmetry.pdf
    Tamaño:
    2.071Mb
    Formato:
    Adobe PDF
    Thumbnail
    Öffnen
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalSolange nicht anders angezeigt, wird die Lizenz wie folgt beschrieben: Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10