• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UVaDOCCommunitiesBy Issue DateAuthorsSubjectsTitles

    My Account

    Login

    Statistics

    View Usage Statistics

    Share

    View Item 
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Grupos de Investigación
    • Grupo de Ingeniería Biomédica
    • GIB - Artículos de revista
    • View Item
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Grupos de Investigación
    • Grupo de Ingeniería Biomédica
    • GIB - Artículos de revista
    • View Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/80304

    Título
    An explainable deep-learning model to stage sleep states in children and propose novel EEG-related patterns in sleep apnea
    Autor
    Vaquerizo-Villar, Fernando
    Gutiérrez-Tobal, Gonzalo C.
    Calvo, Eva
    Álvarez, Daniel
    Kheirandish-Gozal, Leila
    del Campo, Félix
    Gozal, David
    Hornero, Roberto
    Año del Documento
    2023-10
    Editorial
    Elsevier
    Descripción
    Producción Científica
    Documento Fuente
    Computers in Biology and Medicine, Octubre 2023, vol. 165, p. 107419
    Abstract
    Automatic deep-learning models used for sleep scoring in children with obstructive sleep apnea (OSA) are perceived as black boxes, limiting their implementation in clinical settings. Accordingly, we aimed to develop an accurate and interpretable deep-learning model for sleep staging in children using single-channel electroencephalogram (EEG) recordings. We used EEG signals from the Childhood Adenotonsillectomy Trial (CHAT) dataset (n = 1637) and a clinical sleep database (n = 980). Three distinct deep-learning architectures were explored to automatically classify sleep stages from a single-channel EEG data. Gradient-weighted Class Activation Mapping (Grad-CAM), an explainable artificial intelligence (XAI) algorithm, was then applied to provide an interpretation of the singular EEG patterns contributing to each predicted sleep stage. Among the tested architectures, a standard convolutional neural network (CNN) demonstrated the highest performance for automated sleep stage detection in the CHAT test set (accuracy = 86.9% and five-class kappa = 0.827). Furthermore, the CNN-based estimation of total sleep time exhibited strong agreement in the clinical dataset (intra-class correlation coefficient = 0.772). Our XAI approach using Grad-CAM effectively highlighted the EEG features associated with each sleep stage, emphasizing their influence on the CNN's decision-making process in both datasets. Grad-CAM heatmaps also allowed to identify and analyze epochs within a recording with a highly likelihood to be misclassified, revealing mixed features from different sleep stages within these epochs. Finally, Grad-CAM heatmaps unveiled novel features contributing to sleep scoring using a single EEG channel. Consequently, integrating an explainable CNN-based deep-learning model in the clinical environment could enable automatic sleep staging in pediatric sleep apnea tests.
    Materias Unesco
    3314 Tecnología Médica
    3325 Tecnología de las Telecomunicaciones
    1203.04 Inteligencia Artificial
    Palabras Clave
    Electroencephalogram (EEG)
    Deep learning
    Explainable artificial intelligence (XAI)
    Gradient-weighted class activation mapping (Grad-CAM)
    Pediatric obstructive sleep apnea (OSA)
    Sleep staging
    ISSN
    0010-4825
    Revisión por pares
    SI
    DOI
    10.1016/j.compbiomed.2023.107419
    Patrocinador
    This work was supported by ‘Ministerio de Ciencia e Innovación/Agencia Estatal de Investigación/10.13039/501100011033/‘, ERDF A way of making Europe, and NextGenerationEU/PRTR under projects PID2020-115468RB-I00 and PDC2021-120775-I00, by ‘Sociedad Española de Neumología y Cirugía Torácica (SEPAR)’ under project 649/2018, ‘Sociedad Española de Sueño (SES)’ under project “Beca de Investigación SES 2019”, and by ‘CIBER -Consorcio Centro de Investigación Biomédica en Red-’ (CB19/01/00012) through ‘Instituto de Salud Carlos III’, as well as under the project Tattoo4Sleep from 2022 CIBER-BBN Early Stage Plus call. The Childhood Adenotonsillectomy Trial (CHAT) was supported by the National Institutes of Health (HL083075, HL083129, UL1-RR-024134, UL1 RR024989). The National Sleep Research Resource was supported by the National Heart, Lung, and Blood Institute (R24 HL114473, 75N92019R002). G. C. Gutiérrez-Tobal was supported by a post-doctoral grant from the University of Valladolid. D. Álvarez is supported by a “Ramón y Cajal” grant (RYC2019-028566-I) from the ‘Ministerio de Ciencia e Innovación - Agencia Estatal de Investigación’ co-funded by the European Social Fund. L. Kheirandish-Gozal and D. Gozal are supported by the Leda J. Sears Foundation for Pediatric Research.
    Version del Editor
    https://www.sciencedirect.com/science/article/pii/S0010482523008843?via%3Dihub
    Propietario de los Derechos
    © 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/bync-nd/4.0/).
    Idioma
    spa
    URI
    https://uvadoc.uva.es/handle/10324/80304
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Collections
    • GIB - Artículos de revista [43]
    Show full item record
    Files in this item
    Nombre:
    Vaquerizo2023_CIBM.pdf
    Tamaño:
    12.51Mb
    Formato:
    Adobe PDF
    Descripción:
    Artículo principal
    Thumbnail
    FilesOpen

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10