• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Parcourir

    Tout UVaDOCCommunautésPar date de publicationAuteursSujetsTitres

    Mon compte

    Ouvrir une session

    Statistiques

    Statistiques d'usage de visualisation

    Compartir

    Voir le document 
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Grupos de Investigación
    • Grupo de Ingeniería Biomédica
    • GIB - Artículos de revista
    • Voir le document
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Grupos de Investigación
    • Grupo de Ingeniería Biomédica
    • GIB - Artículos de revista
    • Voir le document
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/80306

    Título
    An Explainable Deep-Learning Approach to Detect Pediatric Sleep Apnea From Single-Channel Airflow
    Autor
    Barroso-García, Verónica
    Vaquerizo-Villar, Fernando
    Gutiérrez-Tobal, Gonzalo C.
    Dayyat, Ehab
    Gozal, David
    Leppänen, Timo
    Hornero, Roberto
    Año del Documento
    2025-10-24
    Editorial
    IEEE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS INC
    Descripción
    Producción Científica
    Documento Fuente
    IEEE Journal of Translational Engineering in Health and Medicine, Octubre 2025, vol. 13, 517-531
    Résumé
    Objective: Approaches based on a single-channel airflow has shown great potential for simplifying pediatric obstructive sleep apnea (OSA) diagnosis. However, analysis has been limited to feature-engineering techniques, restricting identification of complex respiratory patterns, and reducing diagnostic performance in automated models. Here, we propose deep-learning and explainable artificial intelligence (XAI) to estimate the pediatric OSA severity from airflow, while ensuring transparency in automatic decisions. Technology or Method: We used 3,672 overnight airflow recordings from four pediatric datasets. A convolutional neural network (CNN)-based regression model was trained to estimate the apnea-hypopnea index (AHI) and predict OSA severity. We evaluated and compared Gradient-Weighted Class Activation Mapping (Grad-CAM) and SHapley Additive exPlanations (SHAP) to identify the airflow regions where the CNN focuses for predictions. Results: The proposed model demonstrated high concordance between the actual and estimated AHI (intraclass correlation coefficient from 0.69 to 0.87 in the test group), and high diagnostic performance: four-class Cohen’s kappa between 0.37 and 0.43 and accuracies of 82.03%, 97.09%, and 99.03% for three OSA severity cutoffs (i.e. 1, 5, and 10 e/h) in the test group. The interpretability analysis with Grad-CAM and SHAP revealed that the CNN accurately identifies apneic events by focusing on their onset and offset. Both techniques provided complementary information about the model’s decision-making. While Grad-CAM highlighted respiratory events with abrupt signal changes, SHAP captured more subtle patterns with noise included. Conclusions: Accordingly, our model can help automatically detect pediatric OSA and offers clinicians an explainable approach that enhances credibility and usability, thus providing a path toward clinical translation in early diagnosis. Clinical Impact: This study presents an interpretable deep-learning tool using airflow to accurately detect pediatric obstructive sleep apnea, enabling early, objective diagnosis and supporting clinical decision-making through identification of relevant respiratory patterns.
    Materias Unesco
    1203.04 Inteligencia Artificial
    3325 Tecnología de las Telecomunicaciones
    3314 Tecnología Médica
    Palabras Clave
    Airflow
    children
    convolutional neural network (CNN)
    deep-learning (DL)
    explainable artificial intelligence (XAI)
    obstructive sleep apnea (OSA)
    ISSN
    2168-2372
    Revisión por pares
    SI
    DOI
    10.1109/JTEHM.2025.3625388
    Patrocinador
    This work is part of the projects PID2023-148895OB-I00 and CPP2022-009735, funded by MICIU/AEI/10.13039/501100011033, the FSE+, and the European Union ‘‘NextGenerationEU’’/PRTR. This research was also co-funded by the European Union through the Interreg VI-A Spain-Portugal Program (POCTEP) 2021-2027 (0043_NET4SLEEP_2_E), and by ‘‘CIBER—Consorcio Centro de Investigación Biomédica en Red’’ (CB19/01/00012) through ‘‘Instituto de Salud Carlos III (ISCIII)’’, co-funded with European Regional Development Fund. D. Gozal was supported by ‘‘National Institutes of Health (NIH)’’ grant HL166617. T. Leppänen was supported by research funding from the State Research Funding for university-level health research, Kuopio University Hospital, Wellbeing Service County of North Savo (projects 5041820) and the Research Council of Finland (361199).
    Version del Editor
    https://ieeexplore.ieee.org/document/11216356
    Propietario de los Derechos
    © 2025 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
    Idioma
    spa
    URI
    https://uvadoc.uva.es/handle/10324/80306
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • GIB - Artículos de revista [43]
    Afficher la notice complète
    Fichier(s) constituant ce document
    Nombre:
    An_Explainable_Deep-Learning_Approach_to_Detect_Pediatric_Sleep_Apnea_From_Single-Channel_Airflow.pdf
    Tamaño:
    2.609Mo
    Formato:
    Adobe PDF
    Descripción:
    Artículo principal
    Thumbnail
    Voir/Ouvrir

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10