• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Parcourir

    Tout UVaDOCCommunautésPar date de publicationAuteursSujetsTitres

    Mon compte

    Ouvrir une session

    Statistiques

    Statistiques d'usage de visualisation

    Compartir

    Voir le document 
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Producción Vegetal y Recursos Forestales
    • DEP57 - Artículos de revista
    • Voir le document
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Producción Vegetal y Recursos Forestales
    • DEP57 - Artículos de revista
    • Voir le document
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/80345

    Título
    Assessment of spaceborne and airborne lidar metrics using Fay-Herriot models to support forest biomass estimation
    Autor
    Rodríguez Puerta, FranciscoAutoridad UVA
    González-Mezquida, José Bernardo
    Mauro Gutiérrez, FranciscoAutoridad UVA Orcid
    Perroy, Ryan L.
    García-Gómez, Rodrigo
    Pascual, Adrian
    Guerra-Hernández, Juan
    Año del Documento
    2026
    Editorial
    Elsevier
    Documento Fuente
    González-Mesquida, B., Pascual, A., Rodriguez-Puerta, F., Guerra-Hernández, J., Perroy, R. L., García-Gómez, R., & Mauro, F. (2026). Assessment of spaceborne and airborne lidar metrics using Fay-Herriot models to support forest biomass estimation. Forest Ecology and Management, 601, 123369.
    Résumé
    Accurate estimation of Aboveground Biomass Density (AGBD) is essential for understanding carbon cycling and informing forest management and climate mitigation strategies. This study evaluates the use of Fay-Herriot (FH) models to estimate AGBD by integrating metrics from spaceborne LiDAR (GEDI), airborne LiDAR (ALS), and their combination. We assessed predictive performance across two contrasting forest environments: eucalyptus plantations in Hawai‘i and Mediterranean pine forests in Spain. Four estimation methods were compared at each site: FH models using only ALS data, only GEDI data, both data sources combined, and direct estimation using only field data. A model selection process was employed to identify candidate predictors, and all models were rigorously evaluated. To assess the performance of each estimator, Root Mean Square Error (RMSE) and relative efficiency—compared to direct estimation—were used as indicators. The results demonstrate that FH models, regardless of the auxiliary variables used, consistently outperformed direct estimation methods, as evidenced by lower RMSE values. Relative improvements over direct estimations were 18 %, 19 %, and 21 % for ALS, GEDI, and their combination in Hawai‘i; and 31 %, 29 %, and 31 % for the respective auxiliary datasets in Spain. Combining ALS and GEDI yielded only marginal improvements over using each set individually. Furthermore, both datasets exhibited comparable performance. Regarding the predictors, structural metrics related to vertical complexity emerged as key drivers of performance. Together, these results demonstrate that both ALS and GEDI data substantially enhance AGBD estimation within FH frameworks, with GEDI providing a cost-effective alternative at operational scales where ALS data are unavailable.
    ISSN
    0378-1127
    Revisión por pares
    SI
    DOI
    10.1016/j.foreco.2025.123369
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/80345
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP57 - Artículos de revista [110]
    Afficher la notice complète
    Fichier(s) constituant ce document
    Nombre:
    1-s2.0-S0378112725008771-main-3.pdf
    Tamaño:
    6.428Mo
    Formato:
    Adobe PDF
    Thumbnail
    Voir/Ouvrir

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10