• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo UVaDOCComunidadesPor fecha de publicaciónAutoresMateriasTítulos

    Mi cuenta

    Acceder

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Institutos de Investigación
    • Instituto de las Tecnologías Avanzadas en la Producción (ITAP)
    • ITAP - Artículos de revista
    • Ver ítem
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Institutos de Investigación
    • Instituto de las Tecnologías Avanzadas en la Producción (ITAP)
    • ITAP - Artículos de revista
    • Ver ítem
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/80441

    Título
    Improved early prediction of acute pancreatitis severity using SHAP-based XGBoost model: Beyond traditional scoring systems
    Autor
    Cisnal De La Rica, AnaAutoridad UVA Orcid
    Ruiz Rebollo, María Lourdes
    Flórez Pardo, César
    Matesanz Isabel, Jessica
    Pérez Turiel, JavierAutoridad UVA Orcid
    Fraile Marinero, Juan CarlosAutoridad UVA Orcid
    Año del Documento
    2025
    Editorial
    Elsevier
    Descripción
    Producción Científica
    Documento Fuente
    Digestive and Liver Disease, 2025.
    Resumen
    Background: Acute pancreatitis (AP) progresses to severe forms in about 20 % of cases, leading to high morbidity and mortality. Traditional clinical scoring systems for severity prediction (e.g., Ranson, BISAP), are limited by delayed applicability, and suboptimal diagnostic accuracy. Aims: To develop and validate machine learning (ML) models for early prediction of moderately severe and severe acute pancreatitis (MSAP-SAP), and to compare them with conventional scores. Methods: A retrospective cohort of 816 patients (2014–2023) was analyzed. ML models were developed using admission (24-hour) and early (48-hour) data. Models were trained and tested using an 80:20 strat- ified split and evaluated based on ROC-AUC. F-Anova, Mutual Information and SHapley Additive exPlana- tions (SHAP) were used for feature selection. SHAP was also used for model interpretability. Results: The XGBoost model with SHAP-based feature selection (XGBSH ) achieved the highest predic- tive performance with ROC-AUCs of 0.89 (24-hour) and 0.94 (48-hour) on the test cohort. Key predictive features included SIRS, BUN, CRP, creatinine, and pleural effusion. Compared to Ranson and BISAP (both ROC-AUC = 0.72), the XGBSH models demonstrated superior accuracy and allowed flexible, threshold- based classification. Conclusion: The proposed SHAP-enhanced XGBoost model offers a reliable and interpretable tool for early prediction of AP severity, improving clinical decision-making and patient management.
    Palabras Clave
    Acute pancreatitis
    Clinical decision support
    Machine learning
    Severity prediction
    ISSN
    1590-8658
    Revisión por pares
    SI
    DOI
    10.1016/j.dld.2025.10.017
    Version del Editor
    https://www.sciencedirect.com/science/article/pii/S1590865825011776
    Propietario de los Derechos
    © 2025 The Author(s)
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/80441
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • ITAP - Artículos de revista [56]
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    Nombre:
    Improved-early-prediction-acute-pancreatitis-severity.pdf
    Tamaño:
    1.179Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir
    Atribución 4.0 InternacionalLa licencia del ítem se describe como Atribución 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10