• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Parcourir

    Tout UVaDOCCommunautésPar date de publicationAuteursSujetsTitres

    Mon compte

    Ouvrir une session

    Statistiques

    Statistiques d'usage de visualisation

    Compartir

    Voir le document 
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Informática (Arquitectura y Tecnología de Computadores, Ciencias de la Computación e Inteligencia ...)
    • DEP41 - Artículos de revista
    • Voir le document
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Informática (Arquitectura y Tecnología de Computadores, Ciencias de la Computación e Inteligencia ...)
    • DEP41 - Artículos de revista
    • Voir le document
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/80460

    Título
    Utility of multilayer perceptron neural network classifiers in the diagnosis of the obstructive sleep apnoea syndrome from nocturnal oximetry
    Autor
    Marcos Martín, José Víctor
    Hornero Sánchez, RobertoAutoridad UVA Orcid
    Álvarez González, DanielAutoridad UVA Orcid
    Campo Matias, Félix delAutoridad UVA Orcid
    López-Coronado Sánchez-Fortún, MiguelAutoridad UVA Orcid
    Zamarrón, Carlos
    Año del Documento
    2008
    Editorial
    Elsevier
    Descripción
    Producción Científica
    Documento Fuente
    Marcos, J.V., Hornero, R., Álvarez, D., Del Campo, F., Zamarrón, C. and López, M., 2008. Utility of multilayer perceptron neural network classifiers in the diagnosis of the obstructive sleep apnoea syndrome from nocturnal oximetry. Computer Methods and Programs in Biomedicine, 92(1), pp.79-89.
    Résumé
    The aim of this study is to assess the ability of multilayer perceptron (MLP) neural networks as an assistant tool in the diagnosis of the obstructive sleep apnoea syndrome (OSAS). Non-linear features from nocturnal oxygen saturation (SaO2) recordings were used to discriminate between OSAS positive and negative patients. A total of 187 subjects suspected of suffering from OSAS (111 with a positive diagnosis of OSAS and 76 with a negative diagnosis of OSAS) took part in the study. The initial population was divided into training, validation and test sets for deriving and testing our neural network classifier. Three methods were applied to extract non-linear features from SaO2 signals: approximate entropy (ApEn), central tendency measure (CTM) and Lempel-Ziv complexity (LZC). The selected MLP-based classifier provided a diagnostic accuracy of 85.5% (89.8% sensitivity and 79.4% specificity). Our neural network algorithm could represent a useful technique for OSAS detection. It could contribute to reduce the demand for polysomnographic studies in OSAS screening.
    ISSN
    0169-2607
    Revisión por pares
    SI
    DOI
    10.1016/j.cmpb.2008.05.006
    Patrocinador
    This research has been supported by Consejería de Educación de la Junta de Castilla y León under project VA108A06.
    Version del Editor
    https://www.sciencedirect.com/science/article/pii/S0169260708001302
    Propietario de los Derechos
    Elsevier
    Idioma
    spa
    URI
    https://uvadoc.uva.es/handle/10324/80460
    Tipo de versión
    info:eu-repo/semantics/acceptedVersion
    Derechos
    restrictedAccess
    Aparece en las colecciones
    • DEP41 - Artículos de revista [121]
    Afficher la notice complète
    Fichier(s) constituant ce document
    Nombre:
    marcos_cmpb_2008_accepted.pdf
    Tamaño:
    344.7Ko
    Formato:
    Adobe PDF
    Thumbnail
    Voir/Ouvrir

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10