• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Parcourir

    Tout UVaDOCCommunautésPar date de publicationAuteursSujetsTitres

    Mon compte

    Ouvrir une session

    Statistiques

    Statistiques d'usage de visualisation

    Compartir

    Voir le document 
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Escuela de Doctorado (ESDUVa)
    • Tesis doctorales UVa
    • Voir le document
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Escuela de Doctorado (ESDUVa)
    • Tesis doctorales UVa
    • Voir le document
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/8148

    Título
    Una teoría birracional para grafos acíclicos
    Autor
    Marijuán López, CarlosAutoridad UVA Orcid
    Director o Tutor
    Campillo López, AntonioAutoridad UVA
    Editor
    Universidad de Valladolid. Facultad de CienciasAutoridad UVA
    Año del Documento
    1988
    Résumé
    El trabajo de esta tesis está motivado por problemas como los siguientes: 1) dada una configuración geométrica formada por subvariedades de una variedad algebraica, encontrar la evolución grafica de dicha configuración por transformaciones birracionales (principalmente sucesiones de explosiones con centros lisos). 2) dado un grafo, asociar al mismo invariantes numéricos que lo determinen completamente. 3) dar métodos que permitan relacionar y clasificar los grafos de acuerdo con su estructura interna. 4) clasificar y determinar la estructura de los espacios topológicos finitos. 5) dar métodos sistemáticos que permitan realizar cómputos o cálculos enumerativos sobre grafos o espacios topológicos. todos estos problemas pueden ser abordados conjuntamente si se dispone de un lenguaje birracional sobre los grafos. en la tesis se establece una teoría birracional para los grafos acíclicos que tiene como principal resultado la construcción de dos modelos canónicos y naturales en el contexto asociados a cada grafo acíclico. el primero es un bosque (el bosque de las cadenas) y permite reducir el estudio de un grafo al de un bosque mediante pasos elementales (explosiones en distintos niveles). el segundo, la explosión completada o geométrica, está inspirada en el problema 1) y permite asociar a cada grafo un bosque con estructura cubica (un complejo celular cubico, en particular). este es el grafo más natural posible y con estructura manejable que describe el comportamiento (geométrico) de un grafo arbitrario. La teoría birracional completa que se obtiene da, en particular, soluciones a los cinco problemas mencionados.
    Materias (normalizadas)
    Grafos, Teoría de
    Departamento
    Departamento de Álgebra, Geometría y Topología
    DOI
    10.35376/10324/8148
    Idioma
    spa
    URI
    http://uvadoc.uva.es/handle/10324/8148
    Derechos
    openAccess
    Aparece en las colecciones
    • Tesis doctorales UVa [2370]
    Afficher la notice complète
    Fichier(s) constituant ce document
    Nombre:
    TESIS618-150126.pdf
    Tamaño:
    41.75Mo
    Formato:
    Adobe PDF
    Thumbnail
    Voir/Ouvrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcepté là où spécifié autrement, la license de ce document est décrite en tant que Attribution-NonCommercial-NoDerivatives 4.0 International

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10