• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Parcourir

    Tout UVaDOCCommunautésPar date de publicationAuteursSujetsTitres

    Mon compte

    Ouvrir une session

    Statistiques

    Statistiques d'usage de visualisation

    Compartir

    Voir le document 
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Estadística e Investigación Operativa
    • DEP24 - Artículos de revista
    • Voir le document
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Estadística e Investigación Operativa
    • DEP24 - Artículos de revista
    • Voir le document
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/8296

    Título
    Time series clustering using the the total variation distance with applications in Oceanography
    Autor
    Álvarez Esteban, Pedro CésarAutoridad UVA Orcid
    Euán, C.
    Ortega, J.
    Año del Documento
    2015
    Editorial
    Universidad de Valladolid. Facultad de Medicina
    Descripción
    Producción Científica
    Documento Fuente
    Arxiv, 21 jav. 2015 p.1-23
    Résumé
    A time series clustering algorithm based on the use of the total variation distance between normalized spectra as a measure of dissimilarity is proposed in this work. The oscillatory behavior of the series is thus considered the central characteristic for classi cation purposes. The proposed algorithm is compared to several other methods which are also based on features extracted from the original series and the results show that its performance is comparable to the best methods available and in some tests it outperforms the rest. As an application the algorithm is used to determine stationary periods for random sea waves, both in simulations and on a real data set, a problem in which changes between stationary sea states are usually slow.
    Materias (normalizadas)
    Oceanografía - Estadística
    Revisión por pares
    SI
    Idioma
    eng
    URI
    http://uvadoc.uva.es/handle/10324/8296
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP24 - Artículos de revista [78]
    Afficher la notice complète
    Fichier(s) constituant ce document
    Nombre:
    Pedro César.pdf
    Tamaño:
    442.5Ko
    Formato:
    Adobe PDF
    Descripción:
    PD-192
    Thumbnail
    Voir/Ouvrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcepté là où spécifié autrement, la license de ce document est décrite en tant que Attribution-NonCommercial-NoDerivatives 4.0 International

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10