Skip navigation
Por favor, use este identificador para citar o enlazar este ítem: http://uvadoc.uva.es/handle/10324/25557
Registro completo de metadatos
Campo DCValorLengua/Idioma
dc.contributor.authorFarrán Martín, José Ignacio-
dc.contributor.authorGarcía-Sánchez, Pedro A.-
dc.contributor.authorHeredia, Benjamín A.-
dc.contributor.authorLeamer, Micah J.-
dc.date.accessioned2017-09-12T21:34:42Z-
dc.date.available2017-09-12T21:34:42Z-
dc.date.issued2017-09-
dc.identifier.citationDesigns, Codes and Cryptographyes
dc.identifier.issn0925-1022es
dc.identifier.urihttp://uvadoc.uva.es/handle/10324/25557-
dc.description.abstractIn this manuscript we show that the second Feng-Rao number of any telescopic numerical semigroup agrees with the multiplicity of the semigroup. To achieve this result we rst study the behavior of Ap ery sets under gluings of nu- merical semigroups. These results provide a bound for the second Hamming weight of one-point Algebraic Geometry codes, which improves upon other estimates such as the Griesmer Order Bound.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.rightsinfo:eu-repo/semantics/openAccesses
dc.titleThe second Feng-Rao number for codes coming from telescopic semigroupses
dc.typeinfo:eu-repo/semantics/articlees
dc.peerreviewedSIes
Aparece en las colecciones:DEP51 - Artículos de revista

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
AperySetsTelescopicGeneral-revised-svjour3.pdf312,48 kBAdobe PDFThumbnail
Visualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons

Comentarios
Universidad de Valladolid
Powered by MIT's. DSpace software, Version 5.5