Show simple item record

dc.contributor.authorFernández Colino, Alicia
dc.contributor.authorWolf, Frederic
dc.contributor.authorKeijdener, Hans
dc.contributor.authorRütten, Stephan
dc.contributor.authorSchmitz Rodea, Thomas
dc.contributor.authorJockenhoevel, Stefan
dc.contributor.authorRodríguez Cabello, José Carlos 
dc.contributor.authorMela, Petra
dc.date.accessioned2018-12-18T08:20:58Z
dc.date.available2018-12-18T08:20:58Z
dc.date.issued2018
dc.identifier.citationMaterials Science & Engineering C, 2018, Volume 88, Pages 140-147.es
dc.identifier.urihttp://uvadoc.uva.es/handle/10324/33507
dc.descriptionProducción Científicaes
dc.description.abstractElastin is a key extracellular matrix (ECM) protein that imparts functional elasticity to tissues and therefore an attractive candidate for bioengineering materials. Genetically engineered elastin-like recombinamers (ELRs) maintain inherent properties of the natural elastin (e.g. elastic behavior, bioactivity, low thrombogenicity, inverse temperature transition) while featuring precisely controlled composition, the possibility for biofunctionalization and non-animal origin. Recently the chemical modification of ELRs to enable their crosslinking via a catalyst-free click chemistry reaction, has further widened their applicability for tissue engineering. Despite these outstanding properties, the generation of macroporous click-ELR scaffolds with controlled, interconnected porosity has remained elusive so far. This significantly limits the potential of these materials as the porosity has a crucial role on cell infiltration, proliferation and ECM formation. In this study we propose a strategy to overcome this issue by adapting the salt leaching/gas foaming technique to click-ELRs. As result, macroporous hydrogels with tuned pore size and mechanical properties in the range of many native tissues were reproducibly obtained as demonstrated by rheological measurements and quantitative analysis of fluorescence, scanning electron and two-photon microscopy images. Additionally, the appropriate size and interconnectivity of the pores enabled smooth muscle cells to migrate into the click-ELR scaffolds and deposit extracellular matrix. The macroporous structure together with the elastic performance and bioactive character of ELRs, the specificity and non-toxic character of the catalyst-free click-chemistry reaction, make these scaffolds promising candidates for applications in tissue regeneration. This work expands the potential use of ELRs and click chemistry systems in general in different biomedical fields.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherElsevieres
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.subject.classificationElastinaes
dc.subject.classificationQuímica del clices
dc.subject.classificationElastinees
dc.subject.classificationClick-chemistryes
dc.titleMacroporous click-elastin-like hydrogels for tissue engineering applicationses
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2018 Elsevieres
dc.identifier.doihttps://doi.org/10.1016/j.msec.2018.03.013es
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S0928493117335282es
dc.peerreviewedSIes
dc.description.projectMinisterio de Economía, Industria y Competitividad (Projects MAT2013-42473-R, MAT2015-68901-R, MAT2016- 78903-R)es
dc.description.projectJunta de Castilla y León (programa de apoyo a proyectos de investigación - Ref. VA313U14, VA015U16 y PCIN-2015-010)es
dc.description.projectgobierno federal y estatal de Alemania en el marco del Programa de Posición Rotacional i³tm (2014-R4-01) y del Programa START de la Facultad de Medicina de la Universidad de Aachen (proyecto nº 691713),el centro de imágenes del Centro Interdisciplinario de Investigación Clínica (IZKF) de la Facultad de Medicina de la Universidad de Aachenes


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record