Mostrar el registro sencillo del ítem
dc.contributor.author | Dotto, Francesco | |
dc.contributor.author | Farcomeni, Alessio | |
dc.contributor.author | García Escudero, Luis Ángel | |
dc.contributor.author | Mayo Iscar, Agustín | |
dc.date.accessioned | 2016-07-21T12:05:51Z | |
dc.date.available | 2016-07-21T12:05:51Z | |
dc.date.issued | 2016 | |
dc.identifier.uri | http://uvadoc.uva.es/handle/10324/18092 | |
dc.description.abstract | new robust fuzzy linear clustering method is proposed. We estimate coe cients of a linear regression model in each unknown cluster. Our method aims to achieve robustness by trimming a xed proportion of observations. Assignments to clusters are fuzzy: observations contribute to estimates in more than one single cluster. We describe general criteria for tuning the method. The proposed method seems to be robust with respect to di erent types of contamination. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | spa | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject | Estadística | es |
dc.title | A Fuzzy Approach to Robust Clusterwise Regression | es |
dc.type | info:eu-repo/semantics/preprint | es |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
La licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International