Mostrar el registro sencillo del ítem
dc.contributor.advisor | Domínguez Gómez, Jesús Manuel | es |
dc.contributor.author | Dimitriadis Bermejo, Elena | |
dc.contributor.editor | Universidad de Valladolid. Facultad de Ciencias | es |
dc.date.accessioned | 2016-09-20T15:32:01Z | |
dc.date.available | 2016-09-20T15:32:01Z | |
dc.date.issued | 2016 | |
dc.identifier.uri | http://uvadoc.uva.es/handle/10324/19053 | |
dc.description.abstract | A lo largo de este trabajo hemos estudiado el cuerpo de los números p-ádicos, compleción de los números racionales para la norma p-ádica. Así, estudiaremos las propiedades algebraicas y topológicas de éste, comparando en los casos pertinentes con el cuerpo de los números reales. Para ello, veremos la formación de la compleción de un cuerpo normado genérico, para luego poder construir la estructura que nos interesa. Una vez hecho esto, veremos el desarrollo en forma de serie de los números p-ádicos, que llamaremos "desarrollo canónico", y que nos permitirá definir los enteros p-ádicos. Después, trataremos las raíces de los polinomios con coeficientes en los enteros p-ádicos a través del Lema de Hensel, así como otras propiedades algebraicas de los enteros p-ádicos. Por último, tras una pequeña digresión sobre límites proyectivos, veremos las propiedades topológicas de los p-ádicos, algunas de ellas, como la homeomorfía, a través del conjunto triádico de Cantor. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | spa | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject | [Pendiente de asignar] | es |
dc.title | El cuerpo de los números p-ádicos. Propiedades algebraicas y topológicas. | es |
dc.type | info:eu-repo/semantics/bachelorThesis | es |
dc.description.degree | Grado en Matemáticas | es |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
- Trabajos Fin de Grado UVa [30804]
