• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UVaDOCCommunitiesBy Issue DateAuthorsSubjectsTitles

    My Account

    Login

    Statistics

    View Usage Statistics

    Share

    View Item 
    •   UVaDOC Home
    • FINAL DEGREE PROJECTS
    • Trabajos Fin de Grado UVa
    • View Item
    •   UVaDOC Home
    • FINAL DEGREE PROJECTS
    • Trabajos Fin de Grado UVa
    • View Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/19056

    Título
    La ecuación hipergeométrica de Gauss
    Autor
    Navazo Esteban, Santiago
    Director o Tutor
    Mozo Fernández, JorgeAutoridad UVA
    Editor
    Universidad de Valladolid. Facultad de CienciasAutoridad UVA
    Año del Documento
    2016
    Titulación
    Grado en Matemáticas
    Abstract
    En este trabajo se estudiarán las ecuaciones diferenciales lineales de orden superior a 1 con coeficientes holomorfos en la esfera de Riemann, en especial la ecuación hipergeométrica de Gauss. En la primera parte se compararán los teoremas de existencia y unicidad para ecuaciones diferenciales no lineales y ecuaciones diferenciales lineales donde los coeficientes son funciones holomorfas, abordando también la prolongación analítica de las soluciones a lo largo de curvas y el teorema de monodromía. En la segunda parte clasificaremos las singularidades de las ecuaciones diferenciales lineales en singularidades de primer y segundo tipo, regulares e irregulares; y se hará un estudio más exhaustivo de las ecuaciones de orden 2 con coeficientes funciones racionales. En la tercera parte se estudiará como caso particular la ecuación hipergeométrica de Gauss y finalmente se darán aplicaciones prácticas de las ecuaciones diferenciales lineales, así como ideas sobre su implementación computacional.
    Materias (normalizadas)
    [Pendiente de asignar]
    Idioma
    spa
    URI
    http://uvadoc.uva.es/handle/10324/19056
    Derechos
    openAccess
    Collections
    • Trabajos Fin de Grado UVa [30857]
    Show full item record
    Files in this item
    Nombre:
    TFG-G1790.pdf
    Tamaño:
    827.2Kb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen
    Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcept where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 International

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10