Mostrar el registro sencillo del ítem

dc.contributor.authorGarcía Escudero, Luis Ángel 
dc.contributor.authorGordaliza Ramos, Alfonso 
dc.contributor.authorGreselin, Francesca
dc.contributor.authorIngrassia, Salvatore
dc.contributor.authorMayo Iscar, Agustín 
dc.date.accessioned2016-12-01T23:01:50Z
dc.date.available2016-12-01T23:01:50Z
dc.date.issued2016
dc.identifier.citationComputational Statistics and Data Analysis, vol. 99, pp. 131-147.es
dc.identifier.issnISSN: 0167-9473es
dc.identifier.urihttp://uvadoc.uva.es/handle/10324/21412
dc.descriptionProducción Científicaes
dc.description.abstractMixtures of Gaussian factors are powerful tools for modeling an unobserved heterogeneous population, offering – at the same time – dimension reduction and model-based clustering. The high prevalence of spurious solutions and the disturbing effects of outlying observations in maximum likelihood estimation may cause biased or misleading inferences. Restrictions for the component covariances are considered in order to avoid spurious solutions, and trimming is also adopted, to provide robustness against violations of normality assumptions of the underlying latent factors. A detailed AECM algorithm for this new approach is presented. Simulation results and an application to the AIS dataset show the aim and effectiveness of the proposed methodology.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherELSEVIERes
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccesses
dc.subjectConstrained estimation, Factor analyzers modeling, Mixture models, Model-based clustering, Robust estimationes
dc.titleThe joint role of trimming and constraints in robust estimation for mixtures of Gaussian factor analyzers.es
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holderSpringeres
dc.identifier.doi10.1016/j.csda.2016.01.005es
dc.relation.publisherversionhttp://www.sciencedirect.com/science/article/pii/S0167947316000141es
dc.identifier.publicationfirstpage131es
dc.identifier.publicationlastpage147es
dc.identifier.publicationtitleComputational Statistics and Data Analysis,es
dc.identifier.publicationvolume99es
dc.peerreviewedSIes
dc.description.projectMinisterio de Economía y Competitividad and FEDER, grant MTM2014-56235-C2-1-P, and by Consejería de Educación de la Junta de Castilla y León, grant VA212U13, by grant FAR 2015 from the University of Milano-Bicocca and by grant FIR 2014 from the University of Catania.es


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem