• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo UVaDOCComunidadesPor fecha de publicaciónAutoresMateriasTítulos

    Mi cuenta

    Acceder

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Estadística e Investigación Operativa
    • DEP24 - Artículos de revista
    • Ver ítem
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Estadística e Investigación Operativa
    • DEP24 - Artículos de revista
    • Ver ítem
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/21441

    Título
    Robust detection of incipient faults in VSI-fed induction motors using quality control charts.
    Autor
    García Escudero, Luis ÁngelAutoridad UVA Orcid
    Duque Pérez, ÓscarAutoridad UVA Orcid
    Fernández Temprano, Miguel AlejandroAutoridad UVA Orcid
    Moríñigo Sotelo, DanielAutoridad UVA Orcid
    Año del Documento
    2016
    Documento Fuente
    IEEE Transactions on Industry Applications, 2017, vol. 53, n. 3, p. 3076-3085.
    Resumen
    A considerable amount of papers have been published in recent years proposing supervised classifiers to diagnose the health of a machine. The usual procedure with these classifiers is to train them using data acquired through controlled experiments, expecting them to perform well on new data, classifying correctly the condition of a motor. But, obviously, the new motor to be diagnosed cannot be the same that has been used during the training process; it may be a motor with different characteristics and fed from a completely different source. These different conditions between the training process and the testing one can deeply influence the diagnosis. To avoid these drawbacks, in this paper a new method is proposed which is based on robust statistical techniques applied in Quality Control applications. The proposed method is based on the online diagnosis of the operating motor and can detect deviations from the normal operational conditions. A robust approach has been implemented using high-breakdown statistical techniques which can reliably detect anomalous data that often cause an unexpected overestimation of the data variability, reducing the ability of standard procedures to detect faulty conditions in earlier stages. A case study is presented to prove the validity of the proposed approach. Motors of different characteristics, fed from the power line and several different inverters, are tested. Three different fault conditions are provoked, broken bar, a faulty bearing and mixed eccentricity. Experimental results prove that the proposed approach can detect incipient faults.
    Materias (normalizadas)
    Statistics
    Fault detection
    Motors
    Palabras Clave
    Diagnostic expert systems induction motors
    maintenance
    monitoring
    quality control
    ISSN
    0093-9994
    Revisión por pares
    SI
    DOI
    10.1109/TIA.2016.2617300
    Patrocinador
    MINECO and FEDER program grants DPI2014-52842-P, MTM2015-71217-R, MTM2014-56235-C2-1-P
    Consejería de Educación de la Junta de Castilla y León under Grant VA212U13
    Version del Editor
    http://ieeexplore.ieee.org/document/7590081/
    Propietario de los Derechos
    © 2016 IEEE
    Idioma
    eng
    URI
    http://uvadoc.uva.es/handle/10324/21441
    Tipo de versión
    info:eu-repo/semantics/acceptedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP24 - Artículos de revista [77]
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    Nombre:
    Robust detection of incipient faults.pdf
    Tamaño:
    343.5Kb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir
    Attribution 4.0 InternationalLa licencia del ítem se describe como Attribution 4.0 International

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10