Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/21496
Título
Identification of asymmetric conditional heteroscedasticity in the presence of outliers
Año del Documento
2016
Editorial
Springer Open
Descripción
Producción Científica
Documento Fuente
SERIEs: Journal of the Spanish Economic Association, 2016, vol. 7, Issue 1, p. 179–201
Abstract
The identification of asymmetric conditional heteroscedasticity is often based on sample cross-correlations between past and squared observations. In this paper we analyse the effects of outliers on these cross-correlations and, consequently, on the identification of asymmetric volatilities. We showthat, as expected, one isolated big outlier biases the sample cross-correlations towards zero and hence could hide true leverage effect. Unlike, the presence of two or more big consecutive outliers could lead to detecting spurious asymmetries or asymmetries of the wrong sign. We also address the problem of robust estimation of the cross-correlations by extending some popular robust estimators of pairwise correlations and autocorrelations. Their finite sample resistance against outliers is compared through Monte Carlo experiments. Situations with isolated and patchy outliers of different sizes are examined. It is shown that a modified Ramsay-weighted estimator of the cross-correlations outperforms other estimators in identifying asymmetric conditionally heteroscedastic models. Finally, the results are illustrated with an empirical application.
Materias (normalizadas)
Estimación, teoría de la
ISSN
1869-4187
Revisión por pares
SI
Patrocinador
Ministerio de Economía, Industria y Competitividad (ECO2012-32401)
Ministerio de Economía, Industria y Competitividad (ECO2014-58434-P)
Junta de Castilla y León (programa de apoyo a proyectos de investigación – Ref. VA066U13)
Generalitat Valenciana project PROMETEO/2013/037
Ministerio de Economía, Industria y Competitividad (ECO2014-58434-P)
Junta de Castilla y León (programa de apoyo a proyectos de investigación – Ref. VA066U13)
Generalitat Valenciana project PROMETEO/2013/037
Version del Editor
Idioma
eng
Derechos
openAccess
Collections
Files in this item
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 International