• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo UVaDOCComunidadesPor fecha de publicaciónAutoresMateriasTítulos

    Mi cuenta

    Acceder

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Ver ítem
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Ver ítem
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/21722

    Título
    Analysis of spontaneous EEG activity in Alzheimer’s disease using cross-sample entropy and graph theory
    Autor
    Gómez Peña, CarlosAutoridad UVA Orcid
    Poza Crespo, JesúsAutoridad UVA Orcid
    Gómez Pilar, JavierAutoridad UVA Orcid
    Bachiller Matarranz, AlejandroAutoridad UVA
    Juan Cruz, Celia
    Tola Arribas, Miguel ÁngelAutoridad UVA Orcid
    Carreres Rodríguez, Alicia
    Cano, Mónica
    Hornero Sánchez, RobertoAutoridad UVA Orcid
    Año del Documento
    2016
    Editorial
    IEEE Conference Publications
    Descripción
    Producción Científica
    Documento Fuente
    Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference, 2016, p. 2830 - 2833
    Resumen
    The aim of this pilot study was to analyze spontaneous electroencephalography (EEG) activity in Alzheimer’s disease (AD) by means of Cross-Sample Entropy (Cross-SampEn) and two local measures derived from graph theory: clustering coefficient (CC) and characteristic path length (PL). Five minutes of EEG activity were recorded from 37 patients with dementia due to AD and 29 elderly controls. Our results showed that Cross-SampEn values were lower in the AD group than in the control one for all the interactions among EEG channels. This finding indicates that EEG activity in AD is characterized by a lower statistical dissimilarity among channels. Significant differences were found mainly for fronto-central interactions (p < 0.01, permutation test). Additionally, the application of graph theory measures revealed diverse neural network changes, i.e. lower CC and higher PL values in AD group, leading to a less efficient brain organization. This study suggests the usefulness of our approach to provide further insights into the underlying brain dynamics associated with AD.
    Materias (normalizadas)
    Entropy
    ISSN
    1557-170X
    Revisión por pares
    SI
    Patrocinador
    Ministerio de Economía y Competitividad (TEC2014-53196-R)
    Junta de Castilla y León (proyecto VA037U16 y BIO/VA08/15)
    Version del Editor
    http://ieeexplore.ieee.org/servlet/opac?punumber=1000269
    Idioma
    eng
    URI
    http://uvadoc.uva.es/handle/10324/21722
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP71 - Artículos de revista [358]
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    Nombre:
    Gomez_etal_EMBC_2016_post-review.pdf
    Tamaño:
    4.872Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternationalLa licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10